Skip to main content
Log in

A disaggregated dynamic model for predicting volume, biomass and carbon stocks in even-aged pedunculate oak stands in Galicia (NW Spain)

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

A model was developed for predicting current and future disaggregated volume, biomass and carbon stocks in even-aged pedunculate oak (Quercus robur L.) stands in Galicia (northwestern Spain). In the model, the stand state at any point in time is defined by age (A), dominant height (H), number of trees per hectare (N) and stand basal area (G). A dynamic model project H, N and G over time by using transition functions in algebraic difference form. A number of static relationships are used to estimate other quantities as functions of the stand state. A disaggregation system, which comprises a diameter distribution function and a generalized height–diameter relationship, enables prediction of the number of trees in each diameter class and their average height. A taper equation, developed in a previous study, is used to estimate total and merchantable volume. A set of additive equations is used to predict total aboveground biomass and biomass of different components. Finally, carbon stocks are predicted from the average C content (%) in the different biomass components. The equations in the model were developed under tenable statistical assumptions: a base-age invariant method, which accounted for autocorrelation, correlated errors and different number of observations between the transition functions; and simultaneous fitting of the biomass system, which accounted for heteroscedasticity and inherent correlations between biomass components and the lack of leaf data in some trees. Critical errors of 13, 16 and 11 % were obtained in H, N and G predictions for a projection interval of 3 to 9 years. Biomass equations explained between 78 and 98 % of the observed variability. The average amount of C stored was approximately 48 % of total dry biomass. The proposed model can be used by forest managers as part of a decision support system that enables consideration of production and environmental aspects related to climate change (biomass and C stocks).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Álvarez-González JG, Zingg A, Gadow KV (2010) Estimating growth in beech forests: a study based on long term experiments in Switzerland. Ann For Sci 67:307p1–307p13

    Article  Google Scholar 

  • Amateis RL (2000) Modeling response to thinning in loblolly pine plantations. South J Appl For 24:17–22

    Google Scholar 

  • Bailey RL, Clutter JL (1974) Base-age invariant polymorphic site curves. For Sci 20:155–159

    Google Scholar 

  • Bailey RL, Dell TR (1973) Quantifying diameter distributions with the Weibull function. For Sci 19:97–104

    Google Scholar 

  • Balboa-Murias MA, Rojo A, Álvarez JG, Merino A (2006) Carbon and nutrient stocks in mature Quercus robur L. stand in NW Spain. Ann For Sci 63:557–565

    Article  CAS  Google Scholar 

  • Barrio-Anta M (2003) Crecimiento y producción de masas naturales de Quercus robur L. en Galicia. Th. D. Escuela Politécnica Superior, Universidad de Santiago de Compostela. Lugo, Spain

  • Barrio-Anta M, Álvarez González JG (2005) Development of a stand density management diagram for even-aged pedunculate oak stands and its use in designing thinning schedules. Forestry 78(3):209–216

    Article  Google Scholar 

  • Barrio-Anta M, Diéguez-Aranda U (2005) Site quality of pedunculate oak (Quercus robur L.) stands in Galicia (northwest Spain). Eur J For Res 124:19–28

    Article  Google Scholar 

  • Barrio-Anta M, Castedo-Dorado F, Diéguez-Aranda U, Álvarez González JG, Parresol BR, Rodríguez R (2006) Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can J For Res 36:1461–1474

    Article  Google Scholar 

  • Barrio-Anta M, Diéguez-Aranda U, Castedo-Dorado F, Álvarez González JG, Gadow KV (2007) Merchantable volume system for pedunculate oak in northwestern Spain. Ann For Sci 64:511–520

    Article  Google Scholar 

  • Belsley DA (1991) Conditioning diagnostics, collinearity and weak data in regression. Wiley, New York

    Google Scholar 

  • Bertalanffy LV (1949) Problems of organic growth. Nature 163:156–158

    Article  CAS  PubMed  Google Scholar 

  • Bertalanffy LV (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32:217–231

    Article  Google Scholar 

  • Bi H (2004) Stochastic frontier analysis of a classic self-thinning experiment. Austral Ecol 29:408–417

    Article  Google Scholar 

  • Bi H, Turner J, Lambert M (2004) Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 18:467–479

    Article  Google Scholar 

  • Bi H, Long Y, Turner J, Lei Y, Snowdon P, Li Y, Harper R, Zerihun A, Ximenes F (2010) Additive prediction of aboveground biomass for Pinus radiata (D. Don) plantations. For Ecol Manag 12:2301–2314

    Article  Google Scholar 

  • Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2012) Statistical mapping of tree species over Europe. Eur J For Res 131:145–157

    Article  Google Scholar 

  • Cao QV (2004) Predicting parameters of a Weibull function for modelling diameter distributions. For Sci 50:682–685

    Google Scholar 

  • Cao QV, Burkhart HE, Lemin RC (1982) Diameter distributions and yields of thinned loblolly pine plantations. School of Forestry and Wildlife Resources, VPI and SU, publication no. FSW-1-82

  • Carmean WH (1972) Site index curves for upland oaks in central States. For Sci 18:109–120

    Google Scholar 

  • Castedo-Dorado F, Diéguez-Aranda U, Barrio-Anta M, Sanchez Rodríguez M, Gadow KV (2006) A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. For Ecol Manag 229:202–213

    Article  Google Scholar 

  • Castedo-Dorado F, Diéguez-Aranda U, Álvarez González JG (2007a) A growth model for Pinus radiata D. Don stands in north-western Spain. Ann For Sci 64:453–465

    Article  Google Scholar 

  • Castedo-Dorado F, Diéguez-Aranda U, Barrio-Anta M, Álvarez González JG (2007b) Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA. Ann For Sci 64:609–619

    Article  Google Scholar 

  • Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, Barrio-Anta M, Crecente-Campo F (2012) Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain. Ann For Sci 69:735–746

    Article  Google Scholar 

  • Cieszewski CJ, Bailey RL (2000) Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. For Sci 46:116–126

    Google Scholar 

  • Cieszewski CJ, Harrison M, Martin SW (2000) Practical methods for estimating non biased parameters in self-referencing growth and yield models. University of Georgia PMRC-TR 2000-7

  • Clutter JL (1963) Compatible growth and yield models for loblolly pine. For Sci 9(3):354–371

    Google Scholar 

  • Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL (1992) Timber management: a quantitative approach, 2nd edn. Krieger, Malabar

    Google Scholar 

  • Crecente-Campo F, Soares P, Tomé M, Diéguez-Aranda U (2010a) Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. For Ecol Manag 260:1965–1974

    Article  Google Scholar 

  • Crecente-Campo F, Tomé M, Soares P, Diéguez-Aranda U (2010b) A generalized nonlinear mixed effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. For Ecol Manag 259:943–952

    Article  Google Scholar 

  • Díaz-Fernández PM, Jiménez Sancho P, Martín Albertos S, Tuero Yde, Reyna M, Gil Sánchez L (1995) Regiones de procedencia de Quercus robur L., Quercus petraea (Matt.) Liebl. y Quercus humillis (Miller). Publicaciones del ICONA, MAPA, Madrid

  • Diéguez-Aranda U, Castedo-Dorado F, Álvarez González JG (2005a) Funciones de crecimiento en área basimétrica para masas de Pinus sylvestris L. procedentes de repoblación en Galicia. Invest Agrar Sist Recur For 14(2):253–266

    Article  Google Scholar 

  • Diéguez-Aranda U, Castedo-Dorado F, Álvarez González JG, Rodríguez Soalleiro R (2005b) Modelling mortality of Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain. Eur J For Res 124:143–153

    Article  Google Scholar 

  • Diéguez-Aranda U, Castedo-Dorado F, Álvarez-González JG, Rodríguez-Soalleiro R (2006a) Dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain). Ecol Model 191:225–242

    Article  Google Scholar 

  • Diéguez-Aranda U, Grandas-Arias JA, Álvarez-González JG, Gadow KV (2006b) Site quality curves for birch stands in North-Western Spain. Silva Fenn 40(4):631–644

    Article  Google Scholar 

  • Diéguez-Aranda U, Rojo Alboreca A, Castedo-Dorado F, Álvarez-González JG, Barrio-Anta M, Crecente-Campo F, González González JM, Pérez-Cruzado C, Rodríguez Soalleiro R, López-Sánchez CA, Balboa-Murias MA, Gorgoso Varela JJ, Sánchez Rodríguez F (2009) Herramientas selvícolas para la gestión forestal sostenible en Galicia. Xunta de Galicia

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Dyer ME, Bailey RL (1987) A test of six methods for estimating true heights from stem analysis data. For Sci 33(1):3–13

    Google Scholar 

  • Fabbio G, Frattegiani M, Manetti MC (1994) Height estimation in stem analysis using second differences. For Sci 40:329–340

    Google Scholar 

  • Fang Z, Borders BE, Bailey RL (2000) Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For Sci 46:1–12

    Google Scholar 

  • Fernandez I, Carrasco B, Cabaneiro A (2012) Evolution of soil organic matter composition and edaphic carbon effluxes following oak forest clearing for pasture: climate change implications. Eur J For Res 131:1681–1693

    Article  CAS  Google Scholar 

  • Freese F (1960) Testing accuracy. For Sci 6:139–145

    Google Scholar 

  • Gadow KV (1996) Modelling growth in managed forests—realism and limits of lumping. Sci Total Environ 183:167–177

    Article  Google Scholar 

  • Gadow KV, Pukkala T (2008) Designing green landscapes. Managing forest ecosystems, vol 15. Springer, Dordrecht

    Book  Google Scholar 

  • García O (1988) Growth modelling—a (re)view. N Z For 33(3):14–17

    Google Scholar 

  • García O (1990) Growth of thinned and pruned stands. In: James RÑ, Tarlton GL (eds) Proceedings of a IUFRO symposium on new approaches to spacing and thinning in plantation forestry. Rotorua, New Zealand, Ministry of Forestry, FRI Bulletin, vol 151, pp 84–97

  • García O (1994) The state-space approach in growth modelling. Can J For Res 24:1894–1903

    Article  Google Scholar 

  • García O (1998) Estimating top height with variable plot sizes. Can J For Res 28:1509–1517

    Article  Google Scholar 

  • García O (2001) On bridging the gap between tree-level and stand-level models. In: Rennolls K (ed) Proceedings of IUFRO 4.11 conference. Forest Biometry, Modelling and Information Science. University of Greenwich

  • García O (2003) Dimensionality reduction in growth models: an example. For Biom Model Inform Sci 1:1–15

    Google Scholar 

  • García O (2011) Dynamical implications of the variability representation in site-index modelling. Eur J For Res 130:671–675

    Article  Google Scholar 

  • GesMO support (2014) Descargar GesMO© 2012. http://www.usc.es/uxfs/IMG/GesMO_2_1_17.zip. Accessed 28 June 2014

  • Giurgiu V, Decei I, Armasescu S (1972) The biometry of trees and stands in Rumania: forest mensuration tables. Ceres, Bucharest

    Google Scholar 

  • Greene WH (1999) Econometric analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hamilton CJ, Christie JM (1971) Forest management tables (metric). Forestry commission. Bloklet no. 34

  • Hossfeld JW (1822) Mathematik für Forstmänner, Ökonomen und Cameralisten. Gotha, 4. Bd., S. 310

  • Huang S (1999) Development of compatible height and site index models for young and mature stands within an ecosystem-based management framework. In: Amaro A, Tomé M (eds) Empirical and process-based models for forest tree and stand growth simulation. Edições Salamandra–Novas Tecnologias, Lisbon, pp 61–98

  • Huang S, Yang Y, Wang Y (2003) A critical look at procedures for validating growth and yield models. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. CAB International, Wallingford, pp 271–293

    Google Scholar 

  • Kangas A (1997) On the prediction bias and variance in long-term growth projections. For Ecol Manag 96:207–216

    Article  Google Scholar 

  • Kozak A (1970) Methods of ensuring additivity of biomass components by regression analysis. For Chron 46(5):402–404

    Article  Google Scholar 

  • Kozak A (1988) A variable-exponent taper equation. Can J For Res 18:1363–1368

    Article  Google Scholar 

  • Krumland BE, Wensel LC (1988) A generalized height–diameter equation for coastal California species. West J Appl For 3:113–115

    Google Scholar 

  • Lappi J (1997) A longitudinal analysis of height/diameter curves. For Sci 43:555–570

    Google Scholar 

  • Lindner M, Karjalainen T (2007) Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. Eur J For Res 126:149–156

    Article  Google Scholar 

  • López Sánchez CA, Gorgoso JJ, Castedo-Dorado F, Rojo A, Rodríguez R, Álvarez González JG, Sánchez F (2003) A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Ann For Sci 60:237–245

    Article  Google Scholar 

  • López-Senespleda E, Sánchez-Palomares O (2007) Modelo de calidad de estación y altura dominante para Quercus faginea Lam. en España. Cuadernos SECF 23:199–206

    Google Scholar 

  • Lundqvist B (1957) On the height growth in cultivated stands of pine and spruce in Northern Sweden, Medd. Fran Statens Skogforsk 47:1–64

    Google Scholar 

  • Mäkinen A, Kangas A, Kalliovirta J, Rasinmäki J, Välimäki E (2008) Comparison of treewise and standwise forest simulators by means of quantile regression. For Ecol Manag 255:2709–2717

    Article  Google Scholar 

  • MARM (2011) Cuarto Inventario Forestal Nacional—Galicia. Dirección General de Medio Natural y Política Forestal. Ministerio de Medio Ambiente, y Medio Rural y Marino, Madrid

    Google Scholar 

  • Murphy PA, Farrar RM (1988) Basal area projection equations for thinned natural even aged forest stands. Can J For Res 18:827–832

    Article  Google Scholar 

  • Myers RH (1990) Classical and modern regression with applications, 2nd edn. Duxbury Press, Belmont

    Google Scholar 

  • Nabuurs GJ, Schelhaas MJ (2003) Spatial distribution of whole-tree carbon stocks and fluxes across the forests of Europe: where are the options for bio-energy? Biomass Bioenerg 24:311–320

    Article  Google Scholar 

  • Newberry JD (1991) A note on Carmean’s estimate of height from stem analysis data. For Sci 37(1):368–369

    Google Scholar 

  • Oosterbaan A (1988) Opbrengsttabel voor zomereik (Quercus robur L.). Uitvoering verslag Rijksinstituut voor onderzoek in de bos en landschapsbouw “de Dorschkamp” Band 22(1). Wageningen

  • Pardé JD (1980) Forest biomass. For Abstr 41(8):343–362

    Google Scholar 

  • Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45:573–593

    Google Scholar 

  • Parresol BR (2001) Additivity of nonlinear biomass equations. Can J For Res 31:865–878

    Article  Google Scholar 

  • Patenaudea G, Hillb RA, Milne R, Gaveaud DLA, Briggsa BBJ, Dawsona BBJ (2004) Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sens Environ 93:368–380

    Article  Google Scholar 

  • Peet RK, Christensen NL (1987) Competition and tree death. Bioscience 37:586–595

    Article  Google Scholar 

  • Peng C, Zhang L, Huang S, Zhou X, Parton J, Woods M (2001) Developing ecoregion-based height–diameter models for jack pine and black spruce in Ontario. Forest research report 159. Ministry of Natural Resources, Ontario Forest Research Institute, Ontario

  • Pienaar LV, Shiver BD (1981) Survival functions for site-prepared slash pine plantations in the flatwoods of Georgia and northern Florida. South J Appl For 5:59–62

    Google Scholar 

  • Pienaar LV, Shiver BD (1984) An analysis and models of basal area growth in 45-year-old unthinned and thinned slash pine plantation plots. For Sci 30:933–942

    Google Scholar 

  • Pienaar LV, Turnbull KJ (1973) The Chapman-Richards generalization of von Bertalanffy’s growth model for basal area growth and yield in even-aged stands. For Sci 19:2–22

    Google Scholar 

  • Reque JA (2008) Selvicultura de Quercus petraea L. y Quercus robur L. In: Serrada R, Montero G, Reque JA (eds) Compendio de Selvicultura Aplicada en España. INIA, Ministerio de Eduación y Ciencia, Madrid, pp 745–772

    Google Scholar 

  • Reynolds MR Jr (1984) Estimating the error in model predictions. For Sci 30:454–469

    Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Ruíz de la Torre J (1979) Árboles y arbustos. Quercus robur L. Escuela Técnica Superior de Ingenieros de Montes, Madrid, pp 217–222

    Google Scholar 

  • Sambakhe D, Fortin M, Renaud JP, Deleuze C, Dreyfus P, Picard N (2014) Prediction bias induced by plot size in forest growth models. For Sci 60:1050–1059

    Google Scholar 

  • Sánchez-González M, Montero G, Tomé M (2005) Modelling height and diameter growth of dominant cork oak trees in Spain. Ann For Sci 62:633–643

    Article  Google Scholar 

  • SAS Institute Inc. (2008) SAS/ETS® 9.2. User’s Guide. SAS Institute Inc., Cary, NC

  • SAS Institute Inc. (2010) Base SAS® 9.2 procedures guide: statistical procedures, 3rd edn. SAS Institute Inc., Cary, NC

  • Satoo T, Madgwick HAI (1982) Forest biomass, forestry sciences. Kluwer Academic Publishers Group, Holland

    Google Scholar 

  • Schnute J (1981) A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 38:1128–1140

    Article  Google Scholar 

  • Schober R (1995) Ertragstafeln wichtiger Baumarten. J. D. Sauerländer’s Verlag, Frankfurt am Main, pp 12–151

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Sharma M, Parton J (2007) Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. For Ecol Manag 249:187–198

    Article  Google Scholar 

  • Sharma M, Zhang SY (2004) Height–diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scand J For Res 19:442–451

    Article  Google Scholar 

  • Somogyi Z, Cienciala E, Mäkipää R, Muukkonen P, Lehtonen A, Weiss P (2007) Indirect methods of large-scale forest biomass estimation. Eur J For Res 126:197–207

    Article  Google Scholar 

  • Timbal J, Aussenac G (1996) An overview of ecology and silviculture of indigenous oaks in France. Ann For Sci 53:649–661

    Article  Google Scholar 

  • Tomé M (1988) Modelação do crescimento da árvore individual em povoamentos de Eucalyptus globulus Labill. (1ª rotação) na região centro de Portugal. Th. D. Instituto Superior de Agronomía, Universidade Técnica de Lisboa, Lisboa, Portugal

  • Tomé M, Falcao A, Amaro A (1997) Globulus v.1.0.0: A regionalized growth model for eucalipt plantations in Portugal. In: Ortega A, Gezan S (eds) IUFRO conference: modelling growth of fast-grown tree species. 5–7 September, pp 138–145

  • Vanclay JK (1994) Modelling forest growth and yield. Applications to mixed tropical forests. CAB International, Wallingford

    Google Scholar 

  • Vande Walle I, Mussche S, Samson R, Lust N, Lemeur R (2001) The above-and belowground carbon pools of two mixed deciduous forest stands located in East-Flanders (Belgium). Ann For Sci 58:507–517

    Article  Google Scholar 

  • Wang C (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forest. For Ecol Manag 222:9–16

    Article  Google Scholar 

  • Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK (2011) Forest growth and yield modeling. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • West PW, Ratkowsky DA, Davis AW (1984) Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. For Ecol Manag 7:207–224

    Article  Google Scholar 

  • White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4):817–838

    Article  Google Scholar 

  • Woollons RC (1998) Even-aged stand mortality estimation through a two-step regression process. For Ecol Manag 105:189–195

    Article  Google Scholar 

  • Yang RC, Kozak A, Smith JH (1978) The potential of Weibull-type functions as a flexible growth curve. Can J For Res 8:424–431

    Article  Google Scholar 

  • Yao X, Titus S, MacDonald SE (2001) A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests. Can J For Res 31:283–291

    Google Scholar 

  • Zhang L (1997) Cross-validation of nonlinear growth functions for modeling tree height–diameter distributions. Ann Bot 79:251–257

    Article  Google Scholar 

Download references

Acknowledgments

The present study was financially supported by the Spanish Ministry of Science and Innovation through the research Project “Modelos de evolución de bosques de frondosas autóctonas del noroeste peninsular” (AGL2007-66739-C02-01), co-financed by the European Union through the ERDF (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Gómez-García.

Additional information

Communicated by Aaron R. Weiskittel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-García, E., Crecente-Campo, F., Barrio-Anta, M. et al. A disaggregated dynamic model for predicting volume, biomass and carbon stocks in even-aged pedunculate oak stands in Galicia (NW Spain). Eur J Forest Res 134, 569–583 (2015). https://doi.org/10.1007/s10342-015-0873-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0873-3

Keywords

Navigation