Skip to main content
Log in

Dynamic response of tree growth to changing environmental pollution

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Long-term investigations of Scots pine (Pinus sylvestris L.) growth were carried out in the vicinity of one of the biggest air pollution sources in Lithuania—mineral fertilizers plant “Achema.” It is detected that initial stages of the dynamic tree response to the external stress factors in the polluted environment with an increased quantity of nitrogen compounds have started with a stimulation stage, followed by a gradual transition to a depression of growth. The recovery of the damaged stands took place along with the reduced environmental pollution, and the overdraft of the “normal” annual increment was a characteristic feature of all the investigated stands. This phase is still continuing for the most damaged stands. A very high individual variability of the tree growth response to the environmental impact is a characteristic feature of the damaged Scots pine stands. The homeostatic mechanisms of the survived trees stipulated reaching approximately the same or even higher growth rate as prior to the depression period, and the tree growth rate before the depression period can serve as the most powerful predictor of tree growth recovery capacity under the reduced environmental pollution. Crown defoliation is the next most important predictor of individual tree recovery capacity. Lower stand density and lower competition cause higher recovery capacity of damaged trees. The conclusion is made that a reduction in the environmental pollution on the local and regional scale and especially a decrease in emissions and deposition of sulfur and nitrogen compounds caused the recovery of damaged forests. These trends should be taken into account while analyzing and modeling forest dynamics. Interaction of environmental pollution and climatic factors is very important for the response of tree growth to the environmental stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexieva V, Ivanov S, Sergiev I, Karanov E (2003) Interaction between stresses. Bulgarian J Plant Physiol Special Issue:1–17. http://www.bio21.bas.bg/ipp/gapbfiles/essa-03/03_essa_1-17.pdf

  • Armolaitis K (1998) Nitrogen pollution on local scale in Lithuania: vitality of forest ecosystems. Environ Pollut 102:55–60

    Article  CAS  Google Scholar 

  • Armolaitis K (2001) The recovery of damaged pine forests in an area formerly polluted by nitrogen. In: Optimizing nitrogen management in food and energy production and environmental protection: proceedings of 2nd international nitrogen conference on science and policy. The Scientific World 1

  • Augustaitis A (2011) Impact of meteorological parameters on responses of pine crown condition to acid deposition at Aukštaitija national park. Baltic For 17:205–214

    Google Scholar 

  • Augustaitis A, Augustaitienė I, Kliučius A, Pivoras G, Šopauskienė D, Girgždienė R (2010a) The seasonal variability of air pollution effects on pine conditions under changing climates. Eur J For Res 129:431–441

    Article  CAS  Google Scholar 

  • Augustaitis A, Šopauskienė D, Baužienė I (2010b) Direct and indirect effects of regional air pollution on the crown defoliation. Baltic For 16:23–34

    Google Scholar 

  • Avila A (1996) Time trends in the precipitation chemistry at a mountain site in Northeastern Spain for the period 1983–1994. Atmos Environ 30:1363–1373

    Article  CAS  Google Scholar 

  • Baillie MGL, Pilcher JR (1973) A simple cross-dating program for tree-ring research. Tree-Ring Bull 33:7–14

    Google Scholar 

  • Bauer F (1982) Kommt es forstlich zur katastrophe? Allgemeine Forstzeitschrift 37(29):865–867

    Google Scholar 

  • Boxman AW, Roy CJH, Roelofs PJ (2008) Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in Scots pine forest in Netherlands. Environ Pollut 156:1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Braun S, Thomas VFD, Quiring R, Fluckiger W (2010) Does nitrogen deposition increase forest production? The role of phosphorus. Environ Pollut 158:2043–2052

    Article  CAS  PubMed  Google Scholar 

  • Cook ER (1987) The decomposition of tree ring series for environmental studies. Tree-Ring Bull 47:37–59

    Google Scholar 

  • Currie WS, Nadelhoffer KJ, Aber JD (2004) Redistribution of 15 N highlight turnover and replenishment of mineral soil organic N as a long-term control on forest C balance. For Ecol Manage 196:109–127

    Article  Google Scholar 

  • Dabrovska-Prot E (1986) Monitoring ecologiczny ekosistemov ladowych-možliwošci i zakres. Wiadomošèi Ekologiczne 31(1):55–66

    Google Scholar 

  • de Vries W, Posh M (2011) Modelling the impact of nitrogen deposition, climate change and nutrient limitation on tree carbon sequestration in Europe for the period 1900–2050. Environ Pollut 159:2289–2299

    Article  PubMed  Google Scholar 

  • de Vries W, Vel E, Reind GJ, Deelstra H, Klap JM, Leeters EEJM, Hendriks CMA, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman JW (2003) Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up, and evaluation strategy. For Ecol Manage 174:77–95

    Article  Google Scholar 

  • de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GW, Reijnds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manage 258:1814–1823

    Article  Google Scholar 

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333

    Article  Google Scholar 

  • Donaubauer E (1980) Historical perspectives and international concerns about air pollution effects on forests. In: Proceedings of symposium on effect of air pollutants on mediterranean and temperate forest ecosystems, California, USA, pp 10–12

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    Google Scholar 

  • Drobyshev I, Linderson H, Sonesson K (2007) Relationship between crown condition and tree diameter growth in Southern Swedish oaks. Environ Monit Assess 97:78–89

    Google Scholar 

  • Eckstein D (1987) Measurement and dating procedures in dendrochronology. In: Kairiūkštis L, Bednarz Z, Feliksik E (eds) Methods of dendrochronology, vol 3. IIASA, Warsaw, pp 35–44

    Google Scholar 

  • Eckstein D (1989) Qualitative assessment of past environmental changes. In: Cook E, Kairiūkštis L (eds) Methods of dedrochronology. Applications in the environmental sciences. Kluwer, Dordrecht, pp 220–223

    Google Scholar 

  • Frantz F, Preuchler T, Rohle H (1986) Vitalitatsmerkmale und Zuwachsreactionen erkankter Bergwaldbestande in Bayerichen Alpenraum. Allgemeine Forstzeitschrift 41:952–964

    Google Scholar 

  • Hendricks CMA, Burg J, van den Voshaar O, Leeuwen EP (1997) Relationship between forest condition and stress factors in the Netherland in 1995. DLO Winand Staring Centre for integrated Land, Soil and Water research, Wageningen, NL, Report, pp 148:134

  • Holmes RL (1994) Dendrochronology program library. Laboratory of Tree-Ring Research, University of Arizona, Tucson

  • Juknys R, Jančys E (1998) Dendrochronology for environmental impact assessment. In: Proceedings of the international conference ‘Dendroecology and Environmental Trends’. VMU, Kaunas, pp 169–177

  • Juknys R, Stravinskiene V, Vencloviene J (2002) Tree-ring analysis for the assessment of anthropogenic changes and trends. Environ Monit Assess 77:81–97

    Article  PubMed  Google Scholar 

  • Juknys R, Vencloviene J, Stravinskiene V, Augustaitis A, Bartkevicius E (2003) Scots pine (Pinus sylvestris) growth and condition in polluted environment: from decline to recovery. Environ Pollut 125:205–212

    Article  CAS  PubMed  Google Scholar 

  • Juknys R, Žeimavičius K, Sujetovienė G, Gustainytė J (2012) Response of tree seasonal development to climate warming. Polish J Environ Stud 21:107–113

    Google Scholar 

  • Kairiukstis L, Grigaliunas J, Skuodiene L, Stravinskiene V (1987) Physiological and dendrochronological indications of forest decline and their application for monitoring. In: Kairiukstis L, Nilsson S, Straszak A (eds) Forest decline and reproduction: regional and global consequences. IIASA, Laxenburg, pp 151–169

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    Article  CAS  Google Scholar 

  • Magill AH, Aber JD, Currie W, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kovalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manka D, Moncrief JB, Rayment M, Tedeshi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    Article  PubMed  Google Scholar 

  • Matyssek R, Wieser G, Calfapietra C, de Vries W, Dizengremel P, Ernst D, Joliver Y, Mikkelsen TN, Mohren GMJ, Le Thiec D, Tuovinen JP, Weatherall A, Paoletti E (2012) Forests under climate change and air pollution. Gaps in understanding and future directions for research. Eur J For Res 160:57–65

    CAS  Google Scholar 

  • McLaughlin SB, Shortle WC, Smith KT (2002) Dendroecological applications in air pollution and environmental chemistry: research needs. Dendrochronologia 20(1–2):133–157

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  CAS  Google Scholar 

  • Nelleman C, Thomsen MG (2001) Long-term changes in forest growth: potential effects of nitrogen deposition and acidification. Water Air Soil Pollut 128:197–205

    Article  Google Scholar 

  • Ozolincius R, Stakenas V (1999) Regional forest monitoring. In: Ozolincius R (ed) Monitoring of forest ecosystems in Lithuania. Lutute Publishing house, Kaunas, pp 82–112

    Google Scholar 

  • Paoletti E, Schaub M, Matyssek R, Wieser G, Augustaitis A, Bastrup-Birk AM, Bytnerowich A, Gunthardt-Goerg MS, Muller-Starck G, Serengil Y (2010) Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environ Pollut 158:1986–1989

    Article  CAS  PubMed  Google Scholar 

  • Pollanschutz J (1987) Effects of air pollutants on forest growth. In: Kairiukstis L, Nilsson S, Straszak A (eds) Forest decline and reproduction: regional and global consequences. IIASA, Laxenburg, p 125–129

  • Puxbaum H, Simeonov V, Kalina M (1998) Ten years trends (1984–1993) in the precipitation chemistry in central Austria. Atmos Environ 32:193–202

    Article  CAS  Google Scholar 

  • Schweingruber FH (1985) Abrupt changes in growth reflected in tree ring sequences as an expression of biotic and abiotic influences. In: Inventory and monitoring endangered forests: proceedings of the IUFRO conference, Birmensdorf, pp 291–295

  • Schweingruber FH (1996) Tree rings and environment: dendroecology. Paul Haupt Publishers, Bern, p 609

    Google Scholar 

  • Selye HA (1946) The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol 6:117–230

    Article  CAS  Google Scholar 

  • Serengil Y, Augustaitis A, Bytnerowitz A, Grulke N, Kozovtz AR, Matyssek R, Muler-Starck G, Shaub M, Wieser G, Coskun AA, Paoletti E (2011) Adaptation of forest ecosystems to air pollution and climate change: a global assessment and research priorities. iForest 4:44–48

    Article  Google Scholar 

  • Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A, de Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For Ecol Manage 258:1735–1750

    Article  Google Scholar 

  • Sopauskiene D, Jasineviciene D (2006) Changes in precipitation chemistry in Lithuania for 1981–2004. J Environ Monit 8:347–352

    Article  CAS  PubMed  Google Scholar 

  • Spiecker H (1995) Growth dynamics in a changing environment—long-term observations. Plant Soil 169:555–561

    Article  Google Scholar 

  • Sutton MA, Simpson D, Levy PE, Smith RI, Reis S, van Oijen M, de Vries W (2008) Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. Glob Change Biol 14:2057–2063

    Article  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Inc., Sunderland, MA, p 690

  • Tveite B, Abrahamsen G, Stuanes AO (1990) Liming and wet acid deposition effects on tree growth and nutrition: experimental results. Water Air Soil Pollut 54:409–422

    CAS  Google Scholar 

  • Vitas A (2001) Drought of 1992 in Lithuania and consequences to Norway spruce. Baltic For 7(2):25–30

    Google Scholar 

  • Wentzel KF (1985) Hypothesen und Theorien zum Waldsterben. Forstarchiv 56:51–56

    Google Scholar 

  • Wilczynski S (2006) The variation of tree-ring width of Scots pine (Pinus sylvestris L.) affected by air pollution. Eur J For Res 125:213–219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adomas Vitas.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juknys, R., Augustaitis, A., Venclovienė, J. et al. Dynamic response of tree growth to changing environmental pollution. Eur J Forest Res 133, 713–724 (2014). https://doi.org/10.1007/s10342-013-0712-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0712-3

Keywords

Navigation