Skip to main content

Advertisement

Log in

Spatial and temporal patterns at small scale in Austrocedrus chilensis diseased forests and their effect on disease progression

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Austrocedrus chilensis is an endemic conifer of Patagonia that suffers a widespread mortality whose causes are a topic of discussion. Since Phytophthora austrocedrae is the most probable cause, we proposed that the spatial and temporal patterns of disease at small scale should reflect pathogen behavior. We aimed at characterizing the spatial and temporal patterns of diseased trees in different soil types and the effect of microsite variability on diseased trees spatial pattern. The spatial pattern of disease was influenced by soil type and tree density. In clay soils with low disease incidence (ca. 25%), the spatial pattern was random and not influenced by abiotic microsite conditions. When disease incidence increased (ca. 70%), concurring with denser plots, the spatial pattern was clustered, as a result of an infection process, and it was independent of microsite variability. In soils with better drainage conditions, that is, alluvial soils with volcanic ash input and coarse textured volcanic soils, the disease was clustered and associated with flat microtopographies. The progression of the disease at small scale was influenced by soil, precipitation and tree density. The spatial and temporal patterns of disease progression were associated with a contagion process and with environmental variables that affect drainage, coinciding with Phytophthora biology and requirements. Our results concur in pointing at Phytophthora as the cause of A. chilensis disease in the study area. Management practices should be urgently applied in order to minimize the spread of the inoculum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acker SA, Harmon ME, Spies TA, McKee WA (1996) Spatial patterns of tree mortality in an old-growth Abies-Pseudotsuga stand. Northwest Sci 70(2):132–138

    Google Scholar 

  • Afifi A, Clark V, (1984) Computer-aided multivariate analysis. Lifetime Learning Publications, Belmont.

  • Amoroso M, Larson B (2010) Stand development patterns as a consequence of the mortality in Austrocedrus chilensis forests. For Ecol Manage 259(10):1981–1992

    Article  Google Scholar 

  • Baccalá N, Rosso P, Havrylenko M (1998) Austrocedrus chilensis mortality in the Nahuel Huapi National Park (Argentina). For Ecol Manage 109:261–269

    Article  Google Scholar 

  • Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Longman, Harlow

    Google Scholar 

  • Baldini A, Oltremari J, Holmgren A (2008) Efecto de Cinara cupressi (Hemiptera: Aphididae) sobre el ciprés de la cordillera (Austrocedrus chilensis) después de aplicar control químico. Ciencia e Investig Agrar 35(3):341–350

    Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Brady NC (1974) The nature and properties of soils. McMillan Publishing Company, New York

    Google Scholar 

  • Calí SG (1996) Austrocedrus chilensis: estudio de los anillos de crecimiento y su relación con la dinámica del “mal del ciprés” en el Parque Nacional Nahuel Huapi, Argentina. Dissertation, Universidad Nacional del Comahue, Bariloche, Argentina

  • Colmet Dâage F, Lanciotti ML, Marcolín A (1995) Importancia forestal de los suelos volcánicos de la Patagonia Norte y Central. Instituto Nacional de Tecnología Agropecuaria, Bariloche

    Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Edward Arnold, London

    Google Scholar 

  • Djossa BA, Fahr J, Wiegand T, Ayihouénou BE, Kalko EK, Sinsin A (2008) Land use impact on Vitellaria paradoxa C.F. Gaerten. Stand structure and distribution patterns: a comparison of Biosphere Reserve of Pendjari in Atacora district in Benin. Agrofor Syst 72:205–220

    Article  Google Scholar 

  • El Mujtar V (2009) Análisis integrado de factores genéticos, bióticos y abióticos para la formulación de una nueva hipótesis sobre la etiología del “mal del ciprés”. Dissertation, Universidad Nacional de la Plata. La Plata, Argentina

  • El Mujtar V, Andenmatten E (2007) “Mal del ciprés”: búsqueda de la causa más probable de daño mediante un análisis deductivo y comparativo. Bosque 28(1):3–9

    Google Scholar 

  • Fieldes M, Perrot KW (1966) The nature of allophane in soils Part 3: rapid field and laboratory test for allophane. N Z J Sci 9:623–629

    CAS  Google Scholar 

  • Filip GM, Rosso PH (1999) Cypress mortality (mal del ciprés) in the Patagonian Andes: comparisons with similar forest diseases and declines in North America. Eur J For Pathol 29:89–96

    Article  Google Scholar 

  • Gisi U, Zentmyer GA, Klure LJ (1980) Production of sporangia by Phytophthora cinnamomi and P. palmivora in soils at different matric potentials. Phytopathology 70(4):301–306

    Article  Google Scholar 

  • Greslebin AG, Hansen EM (2009) The decline of Austrocedrus forests in Patagonia (Mal del Ciprés): another Phytophthora-caused forest disease. In: Goheen EM, Frankel SJ (eds) Proceedings of the fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09, Phytophthoras in forests and natural ecosystems. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA

  • Greslebin AG, Hansen EM (2010) Pathogenicity of Phytophthora austrocedrae on Austrocedrus chilensis and its relation with “Mal del Ciprés” in Patagonia. Plant Pathol 59(4):604–612

    Article  Google Scholar 

  • Greslebin AG, Hansen EM, Sutton W (2007) Phytophthora austrocedrae sp. nov., a new species associated with Austrocedrus chilensis mortality in Patagonia (Argentina). Mycol Res 11(3):308–316

    Article  Google Scholar 

  • Gyenge J, Fernández ME, Dalla Salda G, Schlichter T (2005) Leaf and whole-plant water relations of the Patagonian conifer Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri: implications on its drought resistance capacity. Ann For Sci 62:297–302

    Article  Google Scholar 

  • Hansen EM, Goheen DJ, Jules ES, Ullian B (2000) Managing Port-Orford-Cedar and the introduced pathogen Phytophtora lateralis. Plant Dis 84:4–14

    Article  Google Scholar 

  • Hegyi F (1974) A simulation model for managing jack pine stands. In: Fries J (ed) Growth models for tree and stand simulation. Royal Coll For, Res. Note 30

  • Hennon PE, Hansen EM, Shaw CG III (1990) Dynamics of decline and mortality in Chamaecyparis nootkatensis in southeast Alaska. Can J Bot 68:651–662

    Article  Google Scholar 

  • Irisarri J (2000) La propuesta de reclasificación de los Andepts de Argentina, de acuerdo al Orden Andisoles. In: Proceedings of the workshop soil taxonomy, INTA, AICET, AACS, Buenos Aires

  • La Manna L (2005) Caracterización de los suelos bajo bosque de Austrocedrus chilensis a través de un gradiente climático y topográfico en Chubut, Argentina. Bosque 26(2):137–153

    Google Scholar 

  • La Manna L, Matteucci SD (2010) Estructura del Paisaje de bosques de Austrocedrus chilensis con síntomas de defoliación y mortalidad ubicados en distintos tipos de suelo. In: Menghi M, Matteucci SD (eds) Cambios en la cobertura del suelo. Causas, consecuencias y mitigación. Asociación Argentina de Ecología del Paisaje, Buenos Aires, pp 77–82. Available in: http://www.asadep.org.ar/LibroIIjaep/LaManna.pdf

  • La Manna L, Rajchenberg M (2002) Patrones espaciales del “Mal del ciprés” y su relación con las características del suelo. In: Proceedings XVIII Congreso Argentino de la Ciencia del Suelo, Puerto Madryn, Argentina

  • La Manna L, Rajchenberg M (2004a) The decline of Austrocedrus chilensis forests in Patagonia, Argentina: soil features as predisposing factors. For Ecol Manage 190:345–357

    Article  Google Scholar 

  • La Manna L, Rajchenberg M (2004b) Soil properties and Austrocedrus chilensis decline in Central Patagonia, Argentina. Plant Soil 263:29–41

    Article  Google Scholar 

  • La Manna L, Matteucci SD, Kitzberger T (2008) Abiotic factors related to the incidence of Austrocedrus chilensis disease at a landscape scale. For Ecol Manage 256:1087–1095

    Article  Google Scholar 

  • La Manna L, Matteucci SD, Kitzberger T (2012) Modelling potential Phythophtora disease risk in Austrocedrus chilensis forests of Patagonia. Eur J For Res 131:323–337

    Google Scholar 

  • Manion PD (1991) Tree disease concepts, 2 edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Mundo IA, El Mujtar VA, Perdomo MH, Gallo LA, Villalba R, Barrera MD (2010) Austrocedrus chilensis growth decline in relation to drought events in northern Patagonia, Argentina. Trees Struct Funct 24(3):561–570

    Article  Google Scholar 

  • Narro Farías E (1994) Física de Suelos con enfoque agrícola. Editorial Trillas, México DF

  • Navarrete Espinoza E, Cárcamo Ojeda J, Novoa Barra P (2008) Modelos de crecimiento diametral para Austrocedrus chilensis en la Cordillera de Nahuelbuta, Chile: una interpretación biológica. Ciencia e Investig Agrar 33(3):311–320

    Google Scholar 

  • Pastorino M, Fariña M, Bran D, Gallo L (2006) Extremos geográficos de la distribución natural de Austrocedrus chilensis (Cupressaceae). Bol Soc Argent Bot 41:307–311

    Google Scholar 

  • Powers JS, Sollins P, Harmon ME, Jones JA (1999) Plant-pest interactions in time and space: a Douglas-fir bark beetle outbreak as a case study. Landsc Ecol 14:105–120

    Article  Google Scholar 

  • Reeves RJ (1975) Behaviour of Phytophthora cinnamomi Rands in different soils and water regimes. Soil Biol Biochem 7:19–24

    Article  Google Scholar 

  • Rosso PH, Baccalá M, Havrylenko M, Fontenla S (1994) Spatial pattern of Austrocedrus chilensis wilting and the scope of autocorrelation analysis in natural forests. For Ecol Manage 67:273–279

    Article  Google Scholar 

  • Schoeneberger PJ, Wysocky DA, Benham E, Broderson W (1998) Field book for describing and sampling soils. Natural Resources Conservation Service, USDA, National Soil Survey Center, Lincoln

    Google Scholar 

  • Sheil D, Burslem D, Alder D (1995) The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–333

    Article  Google Scholar 

  • Shurtleff MC, Averre CW III (1997) The Plant Disease Clinic and Field Diagnosis of Abiotic Diseases. APS Press, St. Paul

    Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields. Methods of geometrical statistics. Wiley, Chinchester

    Google Scholar 

  • Tilman D (1988) Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton Univ. Press, Princeton

    Google Scholar 

  • Turner M (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Weste G (1983) Population dynamics and survival of Phytophthora. In: Erwin DC, Bartnicki-Gracía S, Tsao PH (eds) Phytophthora: its biology, taxonomy, ecology and pathology. APS Press, St. Paul

    Google Scholar 

  • Wiegand T (2004) Introduction to Point Pattern Analysis with Ripley’s L and the O-ring statistic using the Programita software. User manual, second draft version. (Unedited) Available from T. Wiegand, Department of Ecological Modelling, UFZ-Centre for Environmental Research

  • Wiegand T, Moloney K (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104:209–229

    Article  Google Scholar 

  • Wiegand T, Jeltsch F, Hanski I, Grimm V (2003) Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application. Oikos 100:209–222

    Article  Google Scholar 

  • Xu X, Harwood T, Pautasso M, Jeger M (2009) Spatio-temporal analysis of an invasive plant pathogen (Phytophthora ramorum) in England and Wales. Ecography 32:504–516

    Article  Google Scholar 

  • Zobel DB, Roth LF, Hawk GM (1985) Ecology, pathology, and management of Port-Orford-cedar (Chamaecyparis lawsoniana). General Technical Report PNW-184. U.S. Department of Agriculture, Forest Service. Pacific Northwest Forest and Range Experiment Station, Portland, p 161

    Google Scholar 

Download references

Acknowledgments

We are grateful to A. Greslebin for enriching discussions about A. chilensis disease and to T. Kitzberger for his advice about this study. We acknowledge A. Greslebin and M.L. Velez for ELISA immunoassays and J. Monges and students for their help with the fieldwork. Futaleufú Dam facilitated precipitation data. Administración de Parques Nacionales, Mr. Rowland and Mr. F. Jassimovich allowed the access to the study sites. This research was funded by Agencia Nacional de Promoción Científica (PICTO 36776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila La Manna.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Manna, L., Matteucci, S.D. Spatial and temporal patterns at small scale in Austrocedrus chilensis diseased forests and their effect on disease progression. Eur J Forest Res 131, 1487–1499 (2012). https://doi.org/10.1007/s10342-012-0617-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-012-0617-6

Keywords

Navigation