Skip to main content

Advertisement

Log in

Monitoring responses of forest to climate variations by MODIS NDVI: a case study of Hun River upstream, northeastern China

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This study analyzed the temporal variation of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) of Hun River upstream forest in northeastern China and its correlation with climate parameters (temperature and precipitation) during the period of 2000–2009. We examined the interannual variation of forest, seasonal variation of forest and lag effects of climate variables (temperature and precipitation) on forest using simple regression and correlation. The objective of this paper was to compare the results of our research and previous researches and to show that the conclusions derived from broad-scale researches provided a direction of policy, but the local details were essential to local management. We found that the annual mean NDVI was significantly correlated with annual mean temperature. The forests studied in our research showed insignificant increase trends except for Fraxinus spp. forest. We concluded that the temperature was the limiting factor of vegetation growth in our study area and the forest which was in the core geographic area of its distribution was resilient to climate variation. When seasonal variation was examined, we found the largest increase trend of seasonal mean NDVI was in winter. The result was different from the outcome of previous research at national scale. There were 3 months lag effects of climate variables on vegetation of our study area in summer and autumn, which was consistent with researches at broad scales. The reasons of both difference and indifference were discussed in this paper. We also got information about tree species for local management using MODIS NDVI. The results of this work suggested that information from local scales would be important complements to researches at broad scales and were essential for local managers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beck PSA, Atzberger C, Høgda KA, Johansen B, Skidmore AK (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100(3):321–334. doi:10.1016/j.rse.2005.10.021

    Article  Google Scholar 

  • Beerling DJ, Woodward FI (1996) Palaeo-ecophysiological perspectives on plant responses to global change. Trends Ecol Evol 11(1):20–23

    Article  PubMed  CAS  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science (New York, NY) 320:1444–1449

    Article  CAS  Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science (New York, NY) 320:1456–1457

    Article  CAS  Google Scholar 

  • Chen X, Li B-L (2003) Effect of global climate change and human disturbances on tree diversity of the forest regenerating from clear-cuts of mixed broadleaved Korean pine forest in Northeast China. Chemosphere 51(3):215–226. doi:10.1016/s0045-6535(02)00809-3

    Article  PubMed  CAS  Google Scholar 

  • Coe JM, McLaughlin SB (1980) Winter season corticular photosynthesis in cornus-florida, acer-rubrum, quercus-alba, and liriodendron-tulipifera. For Sci 26(4):561–566

    Google Scholar 

  • Deng H, Wu Z, Zhou S (2000) Respondses of broadleaved Pinus koraiensis in Xiaoxinganling Mt. to global climate change—a dynamic modelling. Chin J Appl Ecol 11:43–46

    CAS  Google Scholar 

  • Dolman AJ, Moors EJ, Elbers JA (2002) The carbon uptake of a mid latitude pine forest growing on sandy soil. Agric For Meteorol 111(3):157–170

    Article  Google Scholar 

  • Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol Evol 14(1):11–16

    Article  PubMed  Google Scholar 

  • Fearnside PM (1999) Plantation forestry in Brazil: the potential impacts of climatic change. Biomass Bioenerg 16(2):91–102. doi:10.1016/s0961-9534(98)00072-5

    Article  Google Scholar 

  • Goldstein AH, Hultman NE, Fracheboud JM, Bauer MR, Panek JA, Xu M, Qi Y, Guenther AB, Baugh W (2000) Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agric For Meteorol 101(2–3):113–129. doi:10.1016/s0168-1923(99)00168-9

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271(5255):1576–1578

    Article  CAS  Google Scholar 

  • Goward SN, Tucker CJ, Dye DG (1985) North-american vegetation patterns observed with the NOAA-7 advanced very high-resolution radiometer. Vegetatio 64(1):3–14

    Article  Google Scholar 

  • Guo Z, Wang Z, Song K, Zhang B, Li F, Liu D (2007) Correlations between forest vegetation NDVI and water/thermal condition in Northeast China forest regions in 1982–2003. Chin J Ecol 26(12):1930–1936

    Google Scholar 

  • Hanninen H (2006) Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26(7):889–898

    Article  PubMed  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. PNAS 103(39):14288–14293. doi:10.1073/pnas.0606291103

    Article  PubMed  CAS  Google Scholar 

  • Hao Z, Dai LM, He HS, Mladenoff DJ, Shao G (2001) Potential response of major tree species to climate warming in Chingbai Mountain. Chin J Appl Ecol 12:653–658

    Google Scholar 

  • He HS, Hao ZQ, Mladenoff DJ, Shao GF, Hu YM, Chang Y (2005) Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China. J Biogeogr 32(12):2043–2056. doi:10.1111/j.1365-2699.2005.01353.x

    Article  Google Scholar 

  • Hogg EH, Price DT, Black TA (2000) Postulated feedbacks of deciduous forest phenology on seasonal climate patterns in the western Canadian interior. J Clim 13(24):4229–4243

    Article  Google Scholar 

  • Huemmrich KF, Goward SN (1997) Vegetation canopy PAR absorptance and NDVI: an assessment for ten tree species with the SAIL model. Remote Sens Environ 61(2):254–269

    Article  Google Scholar 

  • Iverson LR, Schwartz MW, Prasad AM (2004) How fast and far might tree species migrate in the eastern United States due to climate change? Global Ecol Biogeogr 13(3):209–219

    Article  Google Scholar 

  • Jin S, Zhou X, Fan J (2003) Modeling daily photosynthesis of nine major tree species in northeast China. For Ecol Manage 184(1–3):125–140. doi:10.1016/s0378-1127(03)00205-6

    Article  Google Scholar 

  • Ju WM, Chen JM, Harvey D, Wang S (2007) Future carbon balance of China’s forests under climate change and increasing CO2. J Environ Manage 85(3):538–562. doi:10.1016/j.jenvman.2006.04.028

    Article  PubMed  CAS  Google Scholar 

  • Jump AS, Cavin L, Hunter PD (2010) Monitoring and managing responses to climate change at the retreating range edge of forest trees. J Environ Monit 12(10):1791–1798. doi:10.1039/b923773a

    Article  PubMed  CAS  Google Scholar 

  • Justice CO, Vermote E, Townshend JRG, Defries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G, Strahler A, Lucht W, Myneni RB, Knyazikhin Y, Running SW, Nemani RR, Wan ZM, Huete AR, van Leeuwen W, Wolfe RE, Giglio L, Muller JP, Lewis P, Barnsley MJ (1998) The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans Geosci Remote Sens 36(4):1228–1249

    Article  Google Scholar 

  • Kasischke ES, French NHF, Harrell P, Christensen NL Jr, Ustin SL, Barry D (1993) Monitoring of wildfires in Boreal Forests using large area AVHRR NDVI composite image data. Remote Sens Environ 45(1):61–71

    Article  Google Scholar 

  • Laurance WF, Williamson GB (2001) Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv Biol 15(6):1529–1535

    Article  Google Scholar 

  • Law BE, Waring RH (1994) Remote-sensing of leaf-area index and radiation intercepted by understory vegetation. Ecol Appl 4(2):272–279

    Article  Google Scholar 

  • Leng W, He HS, Bu R, Dai L, Hu Y, Wang X (2008) Predicting the distributions of suitable habitat for three larch species under climate warming in Northeastern China. For Ecol Manage 254(3):420–428. doi:10.1016/j.foreco.2007.08.031

    Article  Google Scholar 

  • Liu Q-J, Li X-R, Ma Z-Q, Takeuchi N (2005) Monitoring forest dynamics using satellite imagery—a case study in the natural reserve of Changbai Mountain in China. For Ecol Manage 210(1–3):25–37. doi:10.1016/j.foreco.2005.02.025

    Article  Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations—has its importance been underestimated. Plant Cell Environ 14(8):729–739

    Article  CAS  Google Scholar 

  • Luo M, Piwowar JM, IEEE (2006) Spatial and temporal responses of NDVI to climate and soil factors in the grassland-forest transition zone of Saskatchewan, Canada. In: 2006 IEEE international geoscience and remote sensing symposium, vols 1–8. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS). IEEE, New York, pp 2701–2704

  • Martin PH (1996) Will forest preserves protect temperate and boreal biodiversity from climate change? For Ecol Manage 85(1–3):335–341

    Article  Google Scholar 

  • Maselli F (2004) Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear NDVI data. Remote Sens Environ 89(4):423–433. doi:10.1016/j.rse.2003.10.020

    Article  Google Scholar 

  • Matsunaga K, Togashi K (2009) Seasonal change in susceptibility of Pinus densiflora to Bursaphelenchus xylophilus infection, determined from the number of nematodes passing through branch sections. Nematology 11:409–418. doi:10.1163/156854109x446980

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Global Change Biol 12(10):1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Nakashizuka T, Iida S (1995) Composition, dynamics and disturbance regime of temperate deciduous forests in Monsoon Asia. Vegetatio 121(1–2):23–30

    Article  Google Scholar 

  • Nijs I, Impens I (1996) Effects of elevated CO2 concentration and climate-warming on photosynthesis during winter in Lolium perenne. J Exp Bot 47(300):915–924

    Article  CAS  Google Scholar 

  • Peng C, Zhou X, Zhao S, Wang X, Zhu B, Piao S, Fang J (2009) Quantifying the response of forest carbon balance to future climate change in Northeastern China: model validation and prediction. Global Planet Change 66(3–4):179–194. doi:10.1016/j.gloplacha.2008.12.001

    Article  Google Scholar 

  • Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M (2002) Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89(4):147–162. doi:10.1007/s00114-002-0309-z

    Article  PubMed  CAS  Google Scholar 

  • Piao S (2003) Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J Geophys Res 108:1–13

    Article  Google Scholar 

  • Piao S, Mohammat A, Fang J, Cai Q, Feng J (2006) NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environ Chang 16(4):340–348. doi:10.1016/j.gloenvcha.2006.02.002

    Article  Google Scholar 

  • Pinkard EA, Battaglia M, Bruce J, Leriche A, Kriticos DJ (2010) Process-based modelling of the severity and impact of foliar pest attack on eucalypt plantation productivity under current and future climates. For Ecol Manage 259(4):839–847. doi:10.1016/j.foreco.2009.06.027

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62(3):365–392

    Article  Google Scholar 

  • Rocchini D (2007) Effects of spatial and spectral resolution in estimating ecosystem alpha-diversity by satellite imagery. Remote Sens Environ 111(4):423–434. doi:10.1016/j.rse.2007.03.018

    Article  Google Scholar 

  • Sang WG, Bai F (2009) Vascular diversity patterns of forest ecosystem before and after a 43-year interval under changing climate conditions in the Changbaishan Nature Reserve, northeastern China. Plant Ecol 201(1):115–130. doi:10.1007/s11258-008-9504-0

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol 12(2):343–351. doi:10.1111/j.1365-2486.2005.01097.x

    Article  Google Scholar 

  • Shao G, Schall P, Weishampel JF (1994) Dynamic simulations of mixed broadleaved-Pinus koraiensis forests in the Changbaishan biosphere reserve of China. For Ecol Manage 70(1–3):169–181. doi:10.1016/0378-1127(94)90084-1

    Article  Google Scholar 

  • Shao GF, Yan XD, Bugmann H (2003) Sensitivities of species compositions of the mixed forest in eastern Eurasian continent to climate change. Global Planet Change 37(3–4):307–313. doi:10.1016/s0921-8181(02)00204-7

    Google Scholar 

  • Spanner MA, Pierce LL, Running SW, Peterson DL (1990) The seasonality of AVHRR data of temperate coniferous forests—relationship with leaf-area index. Remote Sens Environ 33(2):97–112

    Article  Google Scholar 

  • Strain BR, Johnson PL (1963) Corticular photosynthesis and growth in populus tremuloides. Ecology 44(3):581–584

    Article  CAS  Google Scholar 

  • Sykes MT, Prentice IC (1996) Climate change, tree species distributions and forest dynamics: a case study in the mixed conifer northern hardwoods zone of northern Europe. Clim Change 34(2):161–177

    Article  Google Scholar 

  • Tan K, Piao S, Peng C, Fang J (2007) Satellite-based estimation of biomass carbon stocks for northeast China’s forests between 1982 and 1999. For Ecol Manage 240(1–3):114–121. doi:10.1016/j.foreco.2006.12.018

    Article  Google Scholar 

  • Tanja S, Berninger F, Vesala T, Markkanen T, Hari P, Makela A, Ilvesniemi H, Hanninen H, Nikinmaa E, Huttula T, Laurila T, Aurela M, Grelle A, Lindroth A, Arneth A, Shibistova O, Lloyd J (2003) Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biol 9(10):1410–1426

    Article  Google Scholar 

  • Thomas S, Malczewski G, Saprunoff M (2007) Assessing the potential of native tree species for carbon sequestration forestry in Northeast China. J Environ Manage 85(3):663–671. doi:10.1016/j.jenvman.2006.04.027

    Article  PubMed  CAS  Google Scholar 

  • Townshend JRG, Justice CO (1986) Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int J Remote Sens 7(11):1435–1445

    Article  Google Scholar 

  • van Leeuwen WJD, Orr BJ, Marsh SE, Herrmann SM (2006) Multi-sensor NDVI data continuity: uncertainties and implications for vegetation monitoring applications. Remote Sens Environ 100(1):67–81. doi:10.1016/j.rse.2005.10.002

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Fang J, Tang Z, Zhu B (2006) Climatic control of primary forest structure and DBH-height allometry in Northeast China. For Ecol Manage 234(1–3):264–274. doi:10.1016/j.foreco.2006.07.007

    Article  Google Scholar 

  • Wang XH, Piao SL, Ciais P, Li JS, Friedlingstein P, Koven C, Chen AP (2011) Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. PNAS 108(4):1240–1245. doi:10.1073/pnas.1014425108

    Article  PubMed  CAS  Google Scholar 

  • Welp LR, Randerson JT, Liu HP (2007) The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric For Meteorol 147(3–4):172–185

    Article  Google Scholar 

  • Zhang X-Q, Xu D (2003) Potential carbon sequestration in China’s forests. Environ Sci Policy 6(5):421–432. doi:10.1016/s1462-9011(03)00072-8

    Article  CAS  Google Scholar 

  • Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res Atmos 106(D17):20069–20083

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed by National Forestry Public Benefit Research Foundation of China (No. 200804001). Thank professor Guan Dexing and Wang Anzhi for providing us climate data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. He.

Additional information

Communicated by A. Merino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., He, X.Y., Li, X.Y. et al. Monitoring responses of forest to climate variations by MODIS NDVI: a case study of Hun River upstream, northeastern China. Eur J Forest Res 131, 705–716 (2012). https://doi.org/10.1007/s10342-011-0543-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0543-z

Keywords

Navigation