Skip to main content
Log in

Thin Layer Peach Drying in Solar Tunnel Drier

Trocknung von Pfirsichen in solarem Tunneltrockner

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

This study presents performance of the solar tunnel dryer for drying of peach samples. The solar tunnel dryer consists of a flat plate solar collector, a drying tunnel, a solar cell module and a small axial fan. It has been constructed at the Department of Agricultural Machinery and Technologies Engineering at Isparta University of Applied Sciences. During the drying process, solar irradiation, drying air temperature, relative humidity, and air velocity were measured constantly in different parts of the dryer. At same time, mass loss of the peach samples was measured during the drying period at one-hour interval. In this study, the color measurements fresh and dried products were determined at the beginning and end of experiment. The fresh peach samples were sorted, graded, washed by tap water and then sliced manually as half-moon without peeling before pretreatment. Sun drying behavior of sliced peach samples pretreated with 1% sodium metabisulfit, 1% ascorbic acid and non-pretreated was investigated. The drying characteristic curves were evaluated against ten mathematical models. Results showed that the Midilli et al. model was found to be the best descriptive model for solar tunnel drying of thin layer peach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akpinar EK (2011) Drying of parsley leaves in a solar dryer and under open sun: modeling, energy, and exergy aspects. J Food Process Eng 34:27–48

    Google Scholar 

  • Aral S, Bese AV (2016) Convective drying of hawthorn fruit: effect of experimental parameters on drying kinetics, color, shrinkage and rehydration capacity. Food Chem 210:577–584

    CAS  PubMed  Google Scholar 

  • Bala BK, Mondol MRA, Biswas BK, Das BL, Chowdury B, Janjai S (2003) Solar drying of pineapple using solar tunnel drier. Renew Energy 28:183–190

    Google Scholar 

  • Bauman I, Bobi Z, Dakovic CZ, Ukrainczyk M (2005) Time and speed of fruit drying on batch fluid-beds. Sadhana 30:687–698

    Google Scholar 

  • Demir K, Sacilik K (2010) Solar drying of Ayaş tomato using a natural convection solar tunnel dryer. J Food Agric Environ 8:7–12

    Google Scholar 

  • Dinani ST, Hamdami N, Shahedi M, Havet M (2014) Mathematical modelling of hot air/electrohydrodynamic drying kinetics of mushroom slices. Energy Convers Manag 86:70–80

    Google Scholar 

  • DiPersio PA, Kendalla PA, Sofos JN (2004) Inactivation of Listeria monocytogenes during drying and storage of peach slices treated with acidic or sodium metabisulfite solutions. Food Microbiol 21:641–648

    CAS  Google Scholar 

  • Doymaz I (2014) Suitability of thin-layer drying models for infrared drying of peach slices. J Food Process Preserv 38:2232–2239

    Google Scholar 

  • Doymaz I, Bilici B (2014) Influence of citric acid pretreatment on drying of peach slices. Int J Food Eng 10:829–837

    CAS  Google Scholar 

  • Ertekin C, Firat MZ (2017) Thin layer drying of agricultural products. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2014.910493

    Article  PubMed  Google Scholar 

  • Ertekin C, Heybeli N (2014) Thin-layer infrared drying of mint leaves. J Food Process Preserv 38:1480–1490

    Google Scholar 

  • FAOSTAT (2016) Food and Agriculture Organization (FAO), Statistical Data. FAO. http://faostat.fao.org/faostat/en/#data/QC

    Google Scholar 

  • Golisz E, Jaros M, Kalicka M (2013) Analysis of convectional drying process of peach. Tech Sci 16:333–343

    Google Scholar 

  • Goyal RK, Kingsly ARP, Manikantan MR, Ilyas SM (2007) Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer. J Food Eng 79:176–180

    Google Scholar 

  • Hansmann CF, Elizabeth J, Britz TJ (1998) Dehydration of peaches without sulphur dioxide. Dry Technol 16:101–121

    CAS  Google Scholar 

  • Harchegani MT, Varnamkhasti MG, Ghanbarian D, Sadeghi M, Tohidi M (2016) Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat Mass Transf 52(2):281–289

    Google Scholar 

  • Ho LJ, Li Z (2013) Mathematical modelling on vacuum drying of Zizyphus jujuba Miller slices. J Food Sci Technol Mysor 50:115–121

    Google Scholar 

  • Hossain MA, Bala BK (2007) Drying of hot chilli using solar tunnel drier. Sol Energy 81:85–92

    CAS  Google Scholar 

  • Janjai S, Lamlert N, Intawee P, Mahayothee B, Boonrod Y, Haewsungcharern M, Bala BK, Nagle M, Muller J (2009) Solar drying of peeled longan using a side loading type solar tunnel dryer: experimental and simulated performance. Dry Technol 27:595–605

    Google Scholar 

  • Johnson AC, Mukhaini EMA (2016) Drying studies on peach and strawberry slices. Cogent Food Agric 2:1141654

    Google Scholar 

  • Kant K, Shukla A, Sharma A, Kumar A, Jainc A (2016) Thermal energy storage based solar drying systems: a review. Innov Food Sci Emerg Technol 34:86–99

    Google Scholar 

  • Kayisoglu S, Ertekin C (2011) Vacuum drying kinetics of Barbunya bean. Philipp Agric Sci 94:285–291

    Google Scholar 

  • Kingsly ARP, Balasubramaniam VM, Rastogi NK (2009) Influence of high-pressure blanching on polyphenoloxidase activity of peach fruits and its drying behavior. Int J Food Prop 12:671–680

    CAS  Google Scholar 

  • Kingsly RP, Goyal RK, Manikantan MR, Ilyas SM (2007) Effects of pretreatments and drying air temperature on drying behaviour of peach slice. Int J Food Sci Technol 42:65–69

    CAS  Google Scholar 

  • Kumar M, Sansaniwal SK, Khatak P (2016) Progress in solar dryers for drying various commodities. Renew Sustain Energy Rev 55:346–360

    Google Scholar 

  • Labed A, Moummi N, Aoues K, Benchabane A (2016) Solar drying of henna (Lawsonia inermis) using different models of solar flat plate collectors: an experimental investigation in the region of Biskra (Algeria). J Clean Prod 112:2545–2552

    Google Scholar 

  • Maragkaki A, Galliou F, Markakis N, Sabathianakis G, Tsompanidis C, Lolos G, Mavrogiannis G, Koukakis G, Lasaridi K, Manios T (2016) Initial investigation of the solar drying method for the drying of olive oil by-products. Waste Biomass Valor 7:819–830

    CAS  Google Scholar 

  • Maskan M (2001) Kinetics of colour change of kiwifruits during hot air and microwave drying. J Food Eng 48(2):169–175

    Google Scholar 

  • Midilli A, Kucuk H, Yapar Z (2002) A new model for single layer drying. Dry Technol 20(7):1503–1513

    Google Scholar 

  • Montero I, Miranda MT, Sepulveda FJ, Arranz JI, Rojas CV, Nogales S (2015) Solar dryer application for olive oil mill wastes. Energies 8:14049–14063

    Google Scholar 

  • Munir A, Sultan U, Iqbal M (2013) Development and performance evaluation of a locally fabricated portable solar tunnel dryer for drying of fruits, vegetables and medicinal plants. Pak J Agri Sci 50:493–498

    Google Scholar 

  • Nabnean S, Janjai S, Thepa S, Sudaprasert K, Songprakorp R, Bala BK (2016) Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes. Renew Energy 94:147–156

    Google Scholar 

  • Patil R, Gawande R (2016) A review on solar tunnel greenhouse drying system. Renew Sustain Energy Rev 56:196–214

    Google Scholar 

  • Sablani SS (2006) Drying of fruits and vegetables: retention of nutritional/functional quality. Dry Technol 24:123–135

    Google Scholar 

  • Sacilik K (2007) Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J Food Eng 79:23–30

    Google Scholar 

  • Sacilik K, Keskin R, Elicin AK (2006) Mathematical modelling of solar tunnel drying of thin layer organic tomato. J Food Eng 73:231–238

    Google Scholar 

  • Schirmer P, Janjai S, Esper A, Smitabhindu R, Muhlbauer W (1996) Experimental investigation of the performance of the solar tunnel dryer dor drying bananas. Renew Energy 7:119–129

    Google Scholar 

  • Sunthonvit N, Srzednicki G, Craske J (2007) Effects of drying treatments on the composition of volatile compounds in dried nectarines. Dry Technol 25:877–881

    CAS  Google Scholar 

  • Talbot P, Lhote M, Heilporn C, Schubert A, Willaert FX, Haut B (2016) Ventilated tunnel solar dryers for small-scale farmers communities: theoretical and practical aspects. Dry Technol 34:1162–1174

    Google Scholar 

  • Tiwari S, Tiwari GN, Al-Helal IM (2016) Performance analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Sol Energy 133:421–428

    Google Scholar 

  • Toğrul IT, Pehlivan D (2004) Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Eng 65:413–425

    Google Scholar 

  • Toğrul IT, Toğrul H (2007) Determination of moisture transport parameters of some fruits under open sun drying conditions. Int J Green Energy 4:397–408

    Google Scholar 

  • Tunde-Akintunde TY (2011) Mathematical modelling of sun and solar drying of chilli pepper. Renew Energy 36:2139–2145

    Google Scholar 

  • Varalakshmi K (2016) Role of conventional energy in rural development in India: feasibility analysis of solar drying technology. Int J Energy Environ Eng 7:321–327

    Google Scholar 

  • Varun S, Naveen S (2014) Experimental investigation of the performance of an indirect-mode natural convection solar dryer for drying fenugreek leaves. J Therm Anal Calorim 118:523–531

    Google Scholar 

  • Vijayan S, Arjunan TV, Kumar A (2016) Mathematical modelling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innov Food Sci Emerg Technol 36:59–67

    Google Scholar 

  • Wang_J SK (2006) Far-infrared and microwave drying of peach. LWT Food Sci Technol 39:247–255

    Google Scholar 

  • Yagcıoglu A (1999) Drying technique of agricultural products. Ege University Faculty of Agriculture Publications, Number: 536. Ege University Faculty of Agriculture, Bornova (in Turkish)

    Google Scholar 

  • Zhu A, Shen X (2014) The model and mass transfer characteristics of convection drying of peach slices. Int J Heat Mass Transf 72:345–351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevil Karaaslan.

Ethics declarations

Conflict of interest

S. Karaaslan, K. Ekinci, C. Ertekin and B.S. Kumbul declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaaslan, S., Ekinci, K., Ertekin, C. et al. Thin Layer Peach Drying in Solar Tunnel Drier. Erwerbs-Obstbau 63, 65–73 (2021). https://doi.org/10.1007/s10341-020-00536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-020-00536-4

Keywords

Schlüsselwörter

Navigation