Skip to main content
Log in

The mushroom sciarid fly, Lycoriella ingenua, benefits from its association with green mold disease (Trichoderma aggressivum) in commercial mushroom production

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The mushroom fly, Lycoriella ingenua Dufour (Diptera: Sciaridae), is a pest in white button mushroom (Agaricus bisporus) farming in North America. The main risk associated with sciarid flies inside mushroom farms is that the adult can potentially vector mushroom green mold disease caused by the pathogenic fungus Trichoderma aggressivum Samuels & W. Gams (Hypocreales). Flies are attracted to T. aggressivum-infected compost and, through subsequent movement, are suspected to spread the spores. The present study evaluated whether there is a fitness benefit for the sciarid flies from their association with T. aggressivum. Lycoriella ingenua was reared on three substrates: (1) spawned mushroom compost inoculated with the T. aggressivum, (2) spawned mushroom compost and (3) unspawned mushroom compost. Developmental time from larva to adult, adult longevity, adult fecundity and female body size were used as indicators of fly fitness. There was a fitness benefit for the sciarid fly when larvae develop on spawned mushroom compost parasitized by green mold, including higher adult emergence rate, faster development time from larva to adult and larger adult females. Fly fitness declined when the compost was fully colonized by A. bisporus mycelia and T. aggressivum was not present. This suggests that sciarid larvae benefit from the T. aggressivum parasitism on A. bisporus and the green mold. Benefits may include improved nutrition, defense suppression or pre-digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MG, Beyer DM, Wuest PJ (2001) Yield comparison of hybrid Agaricus mushroom strains as a measure of resistance to Trichoderma green mold. Plant Dis 85:731–734. 10.1094/PDIS.2001.85.7.731

    Article  Google Scholar 

  • Becher PG, Flick G, Rozpedowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piskur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828. 10.1111/j.1365-2435.2012.02006.x

    Article  Google Scholar 

  • Beyer D (2003) Basic procedures for Agaricus mushroom growing. Penn State University, State College

    Google Scholar 

  • Binns ES (1980) Field and laboratory observations on the substrates of the mushroom fungus gnat Lycoriella auripila (Diptera: sciaridae). Ann Appl Biol 96:143–152

    Article  Google Scholar 

  • Cantelo W, San Antonio J (1982) Effect of mushroom mycelium growth on population development of Lycoriella mali, nematodes, and mites in compost. Environ Entomol 11:227–230. 10.1093/ee/11.1.227

    Article  Google Scholar 

  • Cloonan KR, Andreadis SS, Baker TC (2016) Attraction of female fungus gnats, Lycoriella ingenua, to mushroom-growing substrates and the green mold Trichoderma aggressivum. Entomol Exp Appl 159:298–304. 10.1111/eea.12439

    Article  Google Scholar 

  • Coles P, Barber W (2002) Fungal pathogens. In: Penn State University (ed) Mushroom integrated pest management. Penn State University, State College, pp 52–60

    Google Scholar 

  • Guthrie JL, Castle AJ (2006) Chitinase production during interaction of Trichoderma aggressivum and Agaricus bisporus. Can J Microbiol 52:961–967. 10.1139/w06-054

    Article  CAS  PubMed  Google Scholar 

  • Hamby KA, Becher PG (2016) Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J Pest Sci 89:1–10. 10.1007/s10340-016-0768-1

    Article  Google Scholar 

  • IBM Corp (2015) Released, 2015. IBM SPSS statistics for Windows, Version 23.0. IBM Corp, Armonk, NY

    Google Scholar 

  • Keil C (2002) Arthropod pests. In: Penn State University (ed) Mushroom integrated pest management. Penn State University, State College, pp 47–51

    Google Scholar 

  • Kielbasa R, Snetsinger R (1981) The effect of mushroom mycelial growth on the reproduction of a mushroom infesting sciarid. Melsheimer Entomol Ser 31:15–18

    Google Scholar 

  • Krupke OA, Castle AJ, Rinker DL (2003) The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol Res 107:1467–1475. 10.1017/S0953756203008621

    Article  PubMed  Google Scholar 

  • Largeteau ML, Savoie JM (2010) Microbially induced diseases of Agaricus bisporus: iochemical mechanisms and impact on commercial mushroom production. Appl Microbiol Biotechnol 86:63–73. 10.1007/s00253-010-2445-2

    Article  CAS  PubMed  Google Scholar 

  • Lewandowski M, Sznyk A, Bednarek A (2004) Biology and morphometry of Lycoriella ingenua (Diptera: Sciaridae). Biol Lett 41:41–50

    Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331. 10.1016/j.phytochem.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  • McDonald JH (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Maryland

    Google Scholar 

  • Meng D, Song T, Shen L, Zhang X, Sheng J (2012) Postharvest application of methyl jasmonate for improving quality retention of Agaricus bisporus fruit rodies. J Agric Food Chem 60:6056–6062. 10.1021/jf3006454

    Article  CAS  PubMed  Google Scholar 

  • Mondy N, Corio-Costet MF (2000) The response of the grape berry moth (Lobesia botrana) to a dietary phytophathenic fungus (Botrytis cinerea): the significance of fungus sterols. J Insect Physiol 46:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • O’Brien M, Grogan H, Kavanagh K (2014) Proteomic response of Trichoderma aggressivum f. europaeum to Agaricus bisporus tissue and mushroom compost. Fungal Biol 118:785–791. 10.1016/j.funbio.2014.06.004

    Article  PubMed  Google Scholar 

  • O’Connor L, Keil CB (2005) Mushroom host influence on Lycoriella mali (Diptera: Sciaridae) life cycle. J Econ Ento 98:342–349. 10.1603/0022-0493-98.2.342

    Article  Google Scholar 

  • Rohlfs M (2005) Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front Zool 2:1–7. 10.1186/1742-9994-2-2

    Article  Google Scholar 

  • Rohlfs M, Kürschner L (2010) Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J Appl Entomol 134:667–671. 10.1111/j.1439-0418.2009.01458.x

    Google Scholar 

  • Savoie J-M, Iapicco R, Largeteau-Mamoun ML (2001) Factors influencing the competitive saprophytic ability of Trichoderma harzianum Th2 in mushroom (Agaricus bisporus) compost. Mycol Res 105:1348–1356. 10.1017/S0953756201004993

    Article  CAS  Google Scholar 

  • Savopoulou-Soultani M, Tzanakakis ME (1988) Development of Lobesia botrana (Lepidoptera: Tortricidae) on grapes and apples infected with the fungus Botrytis cinerea. Environ Entomol 17:1–6. 10.1093/ee/17.1.1

    Article  Google Scholar 

  • Shamshad A, Clift AD, Mansfield S (2009) The effect of tibia morphology on vector competency of mushroom sciarid flies. J Appl Entomol 133:484–490. 10.1111/j.1439-0418.2008.01362.x

    Article  Google Scholar 

  • Smith JE, White PF, Edmondson RN, Chandler DE (2006) Effect of different Agaricus species on the development of the mushroom sciarid fly Lycoriella ingenua. Entomol Exp Appl 120:63–69. 10.1111/j.1570-7458.2006.00420.x

    Article  Google Scholar 

  • Sparling GP, Fermor TR, Wood DA (1982) Measurement of the microbial biomass in composted wheat straw, and the possible contribution of the biomass to the nutrition of Agaricus bisporus. Soil Biol Biochem 14:609–611

    Article  Google Scholar 

  • Spiteller P (2008) Chemical defense strategies of higher fungi. Chem A Eur J 14:9100–9110. 10.1002/chem.200800292

    Article  CAS  Google Scholar 

  • Wetzel HA, Wuest PJ, Rinker DL, Finely RJ (1982) Significant insects pests of the commercial mushroom. In: Wuest PJ, Bengtson GD (eds) Penn state handbook for commercial mushroom growers. College of Agriculture, Pennsylvania State University, University Park, pp 34–39

    Google Scholar 

  • White PF (1986) The effect of sciarid larvae (Lycoriella auripila) on cropping of the cultivated mushroom (Agaricus bisporus) Ann. appl. Biol 109:11–17. 10.1111/j.1744-7348.1986.tb03179.x

    Google Scholar 

  • Williams J, Clarkson JM, Mills PR, Cooper RM (2003) Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl Environ Microbiol 69:4192–4199. 10.1128/AEM.69.7.4192-4199.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witzgall P, Proffit M, Rozpedowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M, Kurtzman CP, Piskur J, Knight A (2012) “This is not an apple”—yeast mutualism in codling moth. J Chem Ecol 38:949–957. 10.1007/s10886-012-0158-y

    Article  PubMed  Google Scholar 

  • Yamada R, Deshpande SA, Bruce KD, Mak EM, Ja WW (2015) Microbes promote amino acid harvest to rescue under-nutrition in Drosophila. Cell Rep 10:865–872. 10.1016/j.celrep.2015.01.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by USDA, NIFA, and Specialty Crops Research Initiative Grant No. 441555555. We would like to thank John Pecchia, Kimberly Paley and Vija Wilkinson from the Mushroom Research Centre at the Pennsylvania State University for knowledge input and provision of materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Mazin.

Additional information

Communicated by A. R. Horowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazin, M., Andreadis, S.S., Jenkins, N.E. et al. The mushroom sciarid fly, Lycoriella ingenua, benefits from its association with green mold disease (Trichoderma aggressivum) in commercial mushroom production. J Pest Sci 91, 815–822 (2018). https://doi.org/10.1007/s10340-017-0930-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-017-0930-4

Keywords

Navigation