Skip to main content
Log in

Life cycle and population genetics of bird cherry-oat aphids Rhopalosiphum padi in China: an important pest on wheat crops

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Rhopalosiphun padi is a pest that seriously devastates wheat crops. The life cycle, genetic diversity, and genetic structure of R. padi populations throughout China remain unclear. In the current study, we collected 17 R. padi populations throughout the wheat-growing region of China. Classical standard methods were used to determine the life cycles of 369 clones from the sampled populations. Five polymorphic microsatellite loci were used to genotype individuals from each clone. The results revealed that two populations from spring wheat-growing regions showed cyclical parthenogenesis, whereas 15 populations from winter wheat-growing regions showed obligate parthenogenesis. There was a significant genetic difference between populations with obligate parthenogenesis and populations with cyclical parthenogenesis. Populations with cyclical parthenogenesis did not show significant departures from Hardy–Weinberg equilibrium, whereas all populations with obligate parthenogenesis exhibited significant departures from Hardy–Weinberg equilibrium. Significant genetic structures were found in the populations. Two R. padi populations with cyclical parthenogenesis showed similar genetic structures, two populations from a subtropical plateau had similar genetic structures, and the populations sampled in the large winter wheat-growing regions in northern and central China showed similar genetic structures. There was a significant isolation-by-distance effect present among different populations. To the best of our knowledge, this is the first documentation of the life cycle and population genetic of R. padi in China. Our results are important for the design and optimization of sustainable pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnaud-Haond S, Belkhir K (2007) GENCLONE: a new program to analyse genetics data on clonal organisms. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Balloux F, Lehmann L, de Meeus T (2003) The population genetics of clonal and partially clonal diploids. Genetics 164(4):1635–1644

    PubMed  PubMed Central  Google Scholar 

  • Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281(5385):1986–1990

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson BO (2003) Genetic variation in organisms with sexual and asexual reproduction. J Evol Biol 16(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Blackman RL (1971) Variation in the photoperiodic response within natural populations of Myzus persicae Sulz. Bull Entomol Res 60(4):533–546

    Article  CAS  PubMed  Google Scholar 

  • Blackman RL (1974) Life cycle variation of Myzus persicae (Sulz.) (Hom., Aphididae) in different parts of the world, in relation to genotype and environment. Bull Entomol Res 63(4):595–607

    Article  Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops: An identification and information guide, 2nd edn. Wiley, London

    Google Scholar 

  • Bonnet E, Van der Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Softw 7(10):1–12

    Article  Google Scholar 

  • Cardé RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Ann Rev Entomol 40:559–585

    Article  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Dorn S (2010) Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull Entomol Res 100(1):75–85

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Han ZJ, Qiao XF, Qu MJ (2007a) Resistance mechanisms and associated mutations in acetylcholinesterase genes in Sitobion avenae (Fabricius). Pestic Biochem Phys 87(3):189–195

    Article  CAS  Google Scholar 

  • Chen MH, Han ZJ, Qiao XF, Qu MJ (2007b) Mutations in acetylcholinesterase genes of Rhopalosiphum Padi resistant to organophosphate and carbamate insecticides. Genome 50(2):172–179

    Article  CAS  PubMed  Google Scholar 

  • Danjuma S, Thaochan N, Permkam S, Satasook C (2014) Effect of temperature on the development and survival of immature stagets of the carambola fruit fly, Bactrocera carambolae, and the Asian papaya fruit fly, Bactrocera papayae, reared on guava diet. J Insect Sci 14:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Dedryver CA, Le Gallic JF, Gauthier JP, Simon JC (1998) Life cycle of the aphid Sitobion avenae F. polymorphism associated with sexuality. Ecol Entomol 23:123–132

    Article  Google Scholar 

  • Dedryver CA, Hullé M, Le Gallic JF, Caillaud MC, Simon JC (2001) Coexistence in space and time of sexual and asexual populations of the cereal aphid Sitobion avenae. Oecologia 128(3):379–388

    Article  CAS  PubMed  Google Scholar 

  • Delmotte F, Leterme N, Bonhomme J, Rispe C, Simon JC (2001) Multiple routes to asexuality in an aphid species. Proc Roy Soc Lond B Biol Sci 268(1483):2291–2299

    Article  CAS  Google Scholar 

  • Delmotte F, Leterme N, Gauthier JP, Rispe C, Simon JC (2002) Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol Ecol 11(4):711–723

    Article  CAS  PubMed  Google Scholar 

  • Dieringer D, Schlotterer C (2003) MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3(1):167–169

    Article  CAS  Google Scholar 

  • Dixon AFG (1998) Aphid ecology: an optimization approach, 2nd edn. Blackie and Son Ltd, London

    Google Scholar 

  • Doncaster CP, Pound GE, Cox SJ (2000) The ecological cost of sex. Nature 404(6775):281–285

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567

    Article  PubMed  Google Scholar 

  • Fenton B, Malloch G, Navajas M, Hillier J, Birch ANE (2003) Clonal composition of the peach-potato aphid Myzus persicae (Homoptera: Aphididae) in France and Scotland: Comparative analysis with IGS fingerprinting and microsatellite markers. Ann Appl Biol 142(3):255–267

    Article  CAS  Google Scholar 

  • Fenton B, Kasprowicz L, Malloch G, Pickup J (2010) Reproductive performance of asexual clones of the peach-potato aphid,(Myzus persicae, Homoptera: Aphididae), colonising Scotland in relation to host plant and field ecology. Bull Entomol Res 100(4):451–460

    Article  CAS  PubMed  Google Scholar 

  • Gilabert A, Simon JC, Mieuzet L, Halkett F, Stoeckel S, Plantegenest M, Dedryver CA (2009) Climate and agricultural context shape reproductive mode variation in an aphid crop pest. Mol Ecol 18(14):3050–3061

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2002). FSTAT Version 2.9.3.2 for windows: a computer program to calculate F-statistics. http://www2.unil.ch/popgen/softwares/fstat. Accessed August 23 2005

  • Guillemaud T, Mieuzet L, Simon JC (2003) Spatial and temporal genetic variability in French populations of the peach-potato aphid, Myzus persicae. Heredity 91(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Halkett F, Simon JC, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol Evol 20(4):194–201

    Article  PubMed  Google Scholar 

  • Halkett F, Plantegenest M, Bonhomme J, Simon JC (2008) Gene flow between sexual and facultatively asexual lineages of an aphid species and the maintenance of reproductive mode variation. Mol Ecol 17(12):2998–3007

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282–290

    Article  Google Scholar 

  • He FG, Wang YQ, Yan FY, Zhang J (1994) The preliminary invesitigation of Rhopalosiphum padi (L.) overwinter in Shenyang region. Liaoning Agri Sci 6:46–48

    Google Scholar 

  • Ivey CT, Richards JH (2001) Genetic diversity of everglades sawgrass, Cladium jamaicense (Cyperaceae). Int J Plant Sci 162:817–825

    Article  CAS  Google Scholar 

  • Kanbe T, Akimoto SI (2009) Allelic and genotypic diversity in long-term asexual populations of the pea aphid, Acyrthosiphon pisum in comparison with sexual populations. Mol Ecol 18(5):801–816

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440

    Article  CAS  PubMed  Google Scholar 

  • Krascsenitsová E, Kozánek M, Ferenčík J, Roller L, Stauffer C, Bertheau C (2013) Impact of the Carpathians on the genetic structure of the spruce bark beetle Ips typographus. J Pest Sci 86(4):669–676

    Article  Google Scholar 

  • Loxdale HD (2008) The nature and reality of the aphid clone: genetic variation, adaptation and evolution. Agri Forest Entomol 10(2):81–90

    Article  Google Scholar 

  • Lu YH, Gao XW (2009) Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bull Entomol Res 99(6):611–617

    Article  CAS  PubMed  Google Scholar 

  • Luo RW, Yang CL, Shang YF, Li CS, Zhao JH (1994) Overwinter of and migration of Rhopalosiphum padi. Entomol J East China 3(1):43–47

    Google Scholar 

  • Lynch M (1984) Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q Rev Biol 59:257–290

    Article  Google Scholar 

  • Lyons JI, Pierce AA, Barribeau SM, Sternberg ED, Mongue AJ, Roode J (2012) Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Mol Ecol 21(14):3433–3444

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Margaritopoulos JT, Tsitsipis JA, Goudoudaki S, Blackman RL (2002) Life cycle variation of Myzus persicae (Hemiptera: Aphididae) in Greece. B Entomol Res 92(4):309–319

    CAS  Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Miller NJ (2000) Population structure and gene flow in a host alternating aphid, Pemphigus bursarius. Dissertation, University of Birmingham

  • Normark BB (1999) Evolution in a putatively ancient asexual aphid lineage: recombination and rapid karyotype change. Evolution 53(5):1458–1469

    Article  Google Scholar 

  • Paland S, Colbourne JK, Lynch M (2005) Evolutionary history of contagious asexuality in Daphnia pulex. Evolution 59(4):800–813

    Article  CAS  PubMed  Google Scholar 

  • Papura D, Simon JC, Halkett F, Delmotte F, Le Gallic JF, Dedryver CA (2003) Predominance of sexual reproduction in Romanian populations of the aphid Sitobion avenae inferred from phenotypic and genetic structure. Heredity 90(5):397–404

    Article  CAS  PubMed  Google Scholar 

  • Parry HR, Evans AJ, Morgan D (2006) Aphid population response to agricultural landscape change: a spatially explicit, individual-based model. Ecol Model 199(4):451–463

    Article  Google Scholar 

  • Peck JR (1994) A ruby in the rubbish-beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137(2):597–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peck JR, Yearsley JM, Waxman D (1998) Explaining the geographic distributions of sexual and asexual populations. Nature 391(6670):889–892

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Provan J, Glendinning K, Kelly R, Maggs CA (2013) Levels and patterns of population genetic diversity in the red seaweed Chondrus crispus (Florideophyceae): a direct comparison of single nucleotide polymorphisms and microsatellites. Biol J Linn Soc 108(2):251–262

    Article  Google Scholar 

  • Rispe C, Pierre JS (1998) Coexistence between cyclical parthenogens, obligate parthenogens and intermediates in a fluctuating environment. J Theor Biol 195(1):97–110

    Article  CAS  PubMed  Google Scholar 

  • Rispe C, Pierre JS, Simon JC, Gouyon PH (1998) Models of sexual and asexual coexistence in aphids based on constraints. J Evol Biol 11(6):685–701

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103–106

    Article  PubMed  Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol 6(3):600–602

    Article  Google Scholar 

  • Sandrock C, Razmjou J, Vorburger C (2011) Climate effects on life cycle variation and population genetic architecture of the black bean aphid, Aphis fabae. Mol Ecol 20(19):4165–4181

    Article  PubMed  Google Scholar 

  • Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109(6):365–371

    Article  CAS  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18(2):233–234

    Article  CAS  PubMed  Google Scholar 

  • Shabani M, Bertheau C, Zeinalabedini M, Sarafrazi A, Mardi M, Naraghi SM, Rahimian H, Shojaee M (2013) Population genetic structure and ecological niche modelling of the leafhopper Hishimonus phycitis. J Pest Sci 86(2):173–183

    Article  Google Scholar 

  • Simon JC, Blackman R, Le Gallic JF (1991) Local variability in the life cycle of the bird cherry-oat aphid, Rhopalosiphum padi (Homoptera: Aphididae) in western France. B Entomol Res 81(3):315–322

    Article  Google Scholar 

  • Simon JC, Carrel E, Hebert PDN, Dedryver CA, Bonhomme J, Le Gallic JF (1999a) Genetic diversity and mode of reproduction in French population of the aphid Rhopalosiphum padi L. Heredity 76:305–313

    Article  Google Scholar 

  • Simon JC, Baumann S, Sunnucks P, Pierre JS, Le Gallic JF, Dedryver CA (1999b) Reproductive mode and population genetic structure of the cereal aphid Sitobion avenae studied using phenotypic and microsatellite markers. Mol Ecol 8(4):531–545

    Article  CAS  PubMed  Google Scholar 

  • Simon JC, Leterme N, Delmotte F, Martin O, Estoup A (2001) Isolation and characterization of microsatellite loci in the aphid species, Rhopalosiphum padi. Mol Ecol Notes 1(1):4–5

    Article  CAS  Google Scholar 

  • Simon JC, Rispe C, Sunnucks P (2002) Ecology and evolution of sex in aphids. Trends Ecol Evol 17(1):34–39

    Article  Google Scholar 

  • Simon JC, Delmotte F, Rispe C, Crease T (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc 79(1):151–163

    Article  Google Scholar 

  • Stenberg P, Lundmark M, Saura A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Notes 3(2):329–331

    Article  CAS  Google Scholar 

  • Sunnucks P, England PR, Taylor AC, Hales DF (1996) Microsatellite and chromosome evolution of parthenogenetic Sitobion aphids in Australia. Genetics 144(2):747–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunnucks P, De Barro PJ, Lushai G, Maclean N, Hales DF (1997) Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization. Mol Ecol 6(11):1059–1073

    Article  CAS  PubMed  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1):389–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Bio Evol 28(10):2731–2739

    Article  CAS  Google Scholar 

  • Torriani MVG, Mazzi D, Hein S, Dorn S (2010) Structured populations of the oriental fruit moth in an agricultural ecosystem. Mol Ecol 19(13):2651–2660

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela I, Ridland PM, Weeks AR, Hoffmann AA (2010) Patterns of genetic variation and host adaptation in an invasive population of Rhopalosiphum padi (Hemiptera: Aphididae). Ann Entomol Soc Am 103(6):886–897

    Article  Google Scholar 

  • van Emden HF, Harrington R (2007) Aphids as crop pests. CABI, Oxford

    Book  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  Google Scholar 

  • Vandel A (1928) La parthénogenèse géographique. Contribution à l’étude biologique et cytologique de la parthénogenèse naturelle. B Biol de la Fran et de la Belg 62:164–281

    Google Scholar 

  • Vorburger C, Lancaster M, Sunnucks P (2003) Environmentally related patterns of reproductive modes in the aphid Myzus persicae and the predominance of two ‘superclones’ in Victoria, Australia. Mol Ecol 12(12):3493–3504

    Article  CAS  PubMed  Google Scholar 

  • Vorwerk S, Forneck A (2006) Reproductive mode of grape phylloxera (Daktulosphaira vitifoliae, Homoptera: Phylloxeridae) in Europe: molecular evidence for predominantly asexual populations and a lack of gene flow between them. Genome 49(6):678–687

    Article  PubMed  Google Scholar 

  • Wang YM (2007) Molecular evidence of population genetic structure, migration and reproductive mode of Sitobion avenae (Fabricius) in China. Dissertation, China Agriculture University

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Article  Google Scholar 

  • Wilson ACC, Sunnucks P, Hales DFH (1999) Microevolution, low clonal diversity and genetic affinities of parthenogenetic Sitobion aphids in New Zealand. Mol Ecol 8(10):1655–1666

    Article  CAS  PubMed  Google Scholar 

  • Wöhrmann K, Tomiuk J (1988) Life cycle strategies and genotypic variability in populations of aphids. J Genet 67(1):43–52

    Article  Google Scholar 

  • Zhang JY (1990) The plum and apricot resources in China. China Fruits 4:29–34

    Google Scholar 

  • Zhang XC, Zhou GH, Shi M, Fang JZ, Zhao ZP, Li SH, Dong QZ, Wei K (1985) The rules of long distance migration and virus transmission of wheat aphids. J Plant Prot 12(1):9–16

    Google Scholar 

  • Zhang DX, Yan LN, Ji YJ, Hewitt GM, Huang ZS (2009) Unexpected relationships of substructured populations in Chinese Locusta migratoria. BMC Evol Biol 9(1):144

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Peng X, Liu GM, Pan HY, Dorn S, Chen MH (2013) High genetic diversity and structured populations of the oriental fruit moth in its range of origin. PLoS One 8(11):e78476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grants Nos. 31272036, 31471766), the Doctoral Program Foundation of Institutions of Higher Education of China (20110204110001), and the National Key Technology R&D Program of the Ministry of Science and Technology of China (2012BAK11B03). We thank Huimin Shen, Jin Huang, Geng Tao, Lijun Chen, Yunzhuan He, Shuxia Tao, Changchun Dai, Changyou Li and JinhuaYang for their help with the collection of Rhopalosiphum padi samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maohua Chen.

Additional information

Communicated by B. Lavandero.

Xinle Duan and Xiong Peng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Peng, X., Qiao, X. et al. Life cycle and population genetics of bird cherry-oat aphids Rhopalosiphum padi in China: an important pest on wheat crops. J Pest Sci 90, 103–116 (2017). https://doi.org/10.1007/s10340-016-0752-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0752-9

Keywords

Navigation