Skip to main content
Log in

Exposure to spinosad affects orb-web spider (Agalenatea redii) survival, web construction and prey capture under laboratory conditions

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Spinosad is a neurotoxic pesticide, which is currently used in IPM and organic agriculture. It can affect the survival and ecological function of spiders, which are natural enemies of important agricultural pests. In the laboratory, we carried out tests to determine lethal and sublethal effects of spinosad on mortality, web building, and web characteristics of Agalenatea redii. Spinosad has a lethal effect at the normal application rate (NAR, i.e., 96 g ha−1) causing 35 % mortality (vs 0 % for control) after 4 days and 62 % mortality (vs 14 % for control) after 30 days. For the sublethal effects, web building was affected and fewer spiders built webs when exposed to spinosad (10/37 at NAR and 28/39 at half the NAR vs 35/37 for control group). No delay in web building was observed following exposure. Spider webs showed irregularities in the spiral-thread spacing (parallelism) when exposed to higher doses of spinosad (NAR and half of the NAR). Spinosad also affected prey capture: spiders exposed to spinosad (NAR) showed decreased prey capture efficiency (32 vs 73 % for control). These results showed that spinosad affects the spider predatory behavior (agriculture auxiliaries), which could modify their role in pest biocontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal N, Brar DS (2006) Effects of different neem preparations in comparison to synthetic insecticides on the whitefly parasitoid Encarsia sophia (Hymenoptera: Aphelinidae) and the predator Chrysoperla carnea (Neuroptera: Chrysopidae) on cotton under laboratory conditions. J Pest Sci 79:201–207

    Article  Google Scholar 

  • Ahmed S, Maqsood A (2006) Toxicity of some insecticides on Bracon hebetor under laboratory conditions. Phytoparasitica 34:401–404

    Article  CAS  Google Scholar 

  • Anotaux M, Marchal J, Châline N, Desquilbet L, Leborgne R, Gilbert C, Pasquet A (2012) Ageing alters spider orb-web construction. Anim Behav 84:1113–1121

    Article  Google Scholar 

  • Benamú MA, Schneider MI, Pineda S, Sanchez NE (2007) Sublethal effects of two neurotoxican insecticides on Araneus pratensis (Araneae: Araneidae). Commun Agric Appl Biol Sci 72:557–559

    PubMed  Google Scholar 

  • Benamú MA, Schneider MI, Sánchez NE (2010) Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory. Chemosphere 78:871–876

    Article  PubMed  Google Scholar 

  • Benamú MA, Schneider MI, Sánchez NE (2013) Short and long-term effects of three neurotoxic insecticides on biological and behavioural attributes of the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs. Ecotox 22:1155–1164

    Article  Google Scholar 

  • Cisneros JD, Goulson LC, Derwent CD, Penagos I, Hernandez O, Williams T (2002) Toxic effects of spinosad on predatory insects. Biol Control 23:156–163

    Article  CAS  Google Scholar 

  • Dag˘h F, Bahsi SU (2009) Topical and residual toxicity of six pesticides to Orius majusculus. Phytoparasitica 37:399–405

    Article  Google Scholar 

  • Desneux N, Wajnberg E, Fauvergue X, Privet S, Kaiser L (2004) Sublethal effects of a neurotoxic insecticide on the oviposition behaviour and the patch-time allocation in two aphid parasitoids, Diaeretiella rapae and Aphidius matricariae. Entomol Exp Appl 112:227–235

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • DowAgroScience (2001) Spinosad Technical Bulletin. Dow Agrosciences LLC, Indianapolis

  • Eberhard WG (2011) Are smaller animals behavioural limited? Lack of clear constraints in miniature spiders. Anim Behav 81:813–823

    Article  Google Scholar 

  • Eberhard WG, Hesselberg T (2012) Cues that spiders (Araneae: Araneidae, Tetragnathidae) use to build orbs: lapses in attention to one set of cues because of dissonance withothers? Ethology 118:610–620

    Article  Google Scholar 

  • Filgus M, Castane C, Gabarra R (1999) Residual toxicity of some insecticides on the predatory bugs Dicyphus tamaninii and Macrolophus caliginosus. Biocontrol 44:89–98

    Article  Google Scholar 

  • Foelix R (2011) Biology of spiders, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Galvan TL, Koch RL, Hutchison WD (2005) Toxicity of commonly used insecticides in sweet corn and soybean to multicolores Asian lady beetle (Coleoptera: Coccinellidae). J Econ Entomol 98:780–789

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3:186–188

    Google Scholar 

  • Haseeb M, Liu TX, Jones WA (2004) Effects of selected insecticides on Cotesia plutellae endoparasitoid of Plutella xylostella. Biocontrol 49:33–46

    Article  CAS  Google Scholar 

  • Haynes FK (1988) Subltethal effects of neurotoxic insecticides on insect behaviour. Annu Rev Entomol 33:149–168

    Article  CAS  PubMed  Google Scholar 

  • Heiling AM, Herberstein ME (2000) Interpretations of orb weaving variability: a review of past and current ideas. Ekológia 19:97–106

    Google Scholar 

  • Hesselberg T, Vollrath F (2004) The effects of neurotoxins on webgeometry and web- building behaviour in Araneus diadematus Cl. Physiol Behav 82:519–529

    Article  CAS  PubMed  Google Scholar 

  • IRAC (2014) Insecticide Resistance Action Committee website. http://irac-online.org

  • Jalali MA, Van Leeuwen T, Tirry L, De Clerq P (2009) Toxicity of selected insecticides to the two-spot ladybird Adalia bipunctata. Phytoparasitica 37:323–326

    Article  CAS  Google Scholar 

  • Johnson A, Revis O, Johnson C (2011) Chemical prey Cues influence the urban microhabitat preferences of the Western black widow spiders, Latrodectus hesperus. J Arachnol 39:449–453

    Article  Google Scholar 

  • Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibio 63:101–111

    Article  CAS  Google Scholar 

  • Longley M, Jepson P (1996) The influence of insecticide residues on primary parasitoid and hyperparasitoid foraging behaviour in the laboratory. Entomol Exp Appl 81:259–269

    Article  CAS  Google Scholar 

  • Mahdian K, Van Leeuwen T, Tirry L, De Clerq P (2007) Susceptibility of the predatory stinkbug Picromerus bidens to selected insecticides. Biocontrol 52:765–774

    Article  CAS  Google Scholar 

  • Maloney D, Drummond FA (2003) Spider predation in agroecosystems : can spiders effectively control pest populations? The University of Maine: Department of Biological Sciences. Tech Bull 190:32p

    Google Scholar 

  • Marliac G, Penvern S, Barbier JM, Lescourret F, Capowiez Y (2015) Impact of crop protection strategies on natural enemies in organic apple production. Agro for sustain develop 35:803–813. doi:10.1007/s13593-015-0282-5

    Article  CAS  Google Scholar 

  • Nakata K, Zschokke S (2010) Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in Cyclosa. Proc Roy Soc London  B 277:3019–3025

    Article  Google Scholar 

  • Nyffeler M, Benz PG (1987) Spiders in natural pest control: a review. J Appl Entomol 103:321–339

    Article  Google Scholar 

  • Nyffeler M, Sunderland KD (2003) Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agri Ecosyst Environ 95:579–612

    Article  Google Scholar 

  • Oerk E, Dehne H (2004) Safeguarding production: losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Oerke E (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pasquet A, Ridwan A, Leborgne R (1994) Presence of potential prey affects web building in an orb-weaving spider Zygiella x-notata. Anim Behav 47:477–480

    Article  Google Scholar 

  • Pasquet A, Marchal J, Anotaux M, Leborgne R (2013) Imperfections in perfect architecture: the orb web of spiders. Eur J Entomo 11:493–500

    Article  Google Scholar 

  • Pasquet A, Marchal J, Anotaux M, Leborgne R (2014) Does building activity influence web construction and web characteristics in an orb-web spider? Zool stud 53:11

    Article  Google Scholar 

  • Pekar S (2012) Spiders (Araneae) in the pesticide world: an ecotoxicological review. Pest Manag Sci 68:1438–1446

    Article  CAS  PubMed  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Biol Sci 365:2959–2971

    Article  Google Scholar 

  • Pruitt JN, DiRienzo N, Kralj-Fiser S, Johnson JC, Sih A (2011) Individual-and condition- dependent effects on habitat choice and choosiness. Behav Ecol Sociobiol 65:1987–1995

    Article  Google Scholar 

  • Rezác M, Pekár S, Stará J (2010) The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum. Biocontrol 55:503–510

    Article  Google Scholar 

  • Rimoldi F, Schneider MI, Ronco AE (2008) Susceptibility of Chrysoperla externa eggs (Neuroptera: Chrysopidae) to conventional and biorational insecticides. Environ Entomol 37:1252–1257

    Article  PubMed  Google Scholar 

  • Roberts MJ (1995) Spiders of Britain and Northern Europe. Harper Collins Publishers, London

    Google Scholar 

  • Saber M, Abedi Z (2013) Effects of methoxyfenozide and pyridalyl on the larval ectoparasitoid Habrobracon hebetor. J Pest Sci 86:685–693

    Article  Google Scholar 

  • Samu F, Vollrath F (1992) Spider orb web as bioassay for pesticide side effects. Entomol Exp Appl 62:117–124

    Article  CAS  Google Scholar 

  • Samu F, Matthew G, Lake D, Vollrath F (1992) Spider webs are efficient collectors of agronomical spray. Pest Manag Sci 36:47–51

    Article  Google Scholar 

  • Schneider M, Smagghe G, Pineda S, Vinuela E (2004) Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator. Biocontrol 31:189–198

    CAS  Google Scholar 

  • Schneider M, Smagghe G, Pineda S, Vinuela E (2008) The ecological impact of four IGR insecticides in adults of Hyposoter didymator (Hym., Ichneumonidae): pharmacokinetics approach. Ecotoxicology 17:181–188

    Article  CAS  PubMed  Google Scholar 

  • Schneider C, Rasband W, Eliceiri KW (2012) NIH image to Imagej: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–582

    Article  CAS  PubMed  Google Scholar 

  • Tietjen WJ, Cady AB (2007) Sublethal exposure to a neurotoxic pesticide affects activity rythms and patterns of four spider species. J Arachnol 35:396–406

    Article  Google Scholar 

  • Toscani C, Leborgne R, Pasquet A (2012) Behavioural analysis of web building anomalies in the orb-weaving spider Zygiella x-notata (Araneae, Araneidae). Arachnol Mitteil 43:79–83

    Article  Google Scholar 

  • Venner S, Thevenard L, Pasquet A, Leborgne R (2001) Estimation of the web’s capture thread length in orb-weaving spiders: determining the most efficient formula. Ann Entomol Soc Am 94:490–496

    Article  Google Scholar 

  • Venner S, Bel-Venner MC, Pasquet A, Leborgne R (2003) Body mass-dependant cost of web-building behavior in an orb weaving spider, Zygiella x-notata. Naturwissenschaften 90:269–272

    Article  CAS  PubMed  Google Scholar 

  • Wiles J, Jepson P (1994) Sublethal effects of deltamethrin residues on the within-crop behaviour and distribution of Coccinella septempunctata. Entomol Exp Appl 72:33–45

    Article  CAS  Google Scholar 

  • Williams T, Valle J, Viñuela E (2003) Is the naturally derived insecticide spinosad® compatible with insect natural enemies? Biocontrol Sci Technol 13:459–475

    Article  Google Scholar 

  • Witt PN, Reed CF, Peakall DB (1968) A spiders’web. Problems in regulatory biology. Springer, New York

    Google Scholar 

  • Wyss E, Niggli U, Nentwig W (1995) The impact of spiders on aphid populations in strip- managed apple orchard. J Appl Entomol 119:473–478

    Article  Google Scholar 

  • Zhao E, Xu Y, Dong MF, Jiang SR, Zhou ZQ, Han LJ (2007) Dissipation and residues of spinosad in eggplant and soil. Bull Environ Contam Toxicol 78:222–225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The University of Lorraine (Unit of Research in Functions and Animal Product, URAFPA) supported this study. We thank Joel Couturier who helped us rear the spiders in the laboratory and two anonymous reviewers for their helpful comments on an earlier draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Pasquet.

Additional information

Communicated by J. J. Duan.

Alain Pasquet and Nora Tupinier were first co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquet, A., Tupinier, N., Mazzia, C. et al. Exposure to spinosad affects orb-web spider (Agalenatea redii) survival, web construction and prey capture under laboratory conditions. J Pest Sci 89, 507–515 (2016). https://doi.org/10.1007/s10340-015-0691-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0691-x

Keywords

Navigation