Skip to main content
Log in

Search for Potential Biomarkers by UPLC/Q-TOF–MS Analysis of Dynamic Changes of Glycerophospholipid Constituents of RAW264.7 Cells Treated With NSAID

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

It is well-known that alteration of the glycerophospholipid (GPL) constituents of tissues can lead to disease. We report dynamic changes of GPL constituents of RAW264.7 cells with different status, revealed by use of modern analytical techniques and chemometrics to find potential biomarkers. An inflammation model of Kdo2-lipid A (KLA)-stimulated RAW264.7 cells was developed. Effects on the model of treatment with three non-steroidal anti-inflammatory drugs (NSAID), aspirin, indomethacin, and brufen, were determined by use of UPLC-Q/TOF–MS analysis. Total-ion-current profiles representative of GPL metabolism under different conditions were acquired and the data were processed by principal-components analysis (PCA) and partial least-squares discriminant analysis (PLSDA). The results revealed changes of GPL metabolites related to the anti-inflammatory effects of the NSAID. Seventeen potential biomarkers were selected by use of t tests, Shrinkt, Principal Component Linear Discriminant (PCLDA), Variable importance in projection (VIP), and PLSDA. Among these biomarkers, amounts of phosphatidylcholine (PC, 16:0/18:1) and phosphatidylethanolamine (PE, 18:0/18:1) changed significantly in the three NSAID treatment groups and may be the important GPL biomarkers of the occurrence and resolution of inflammation. UPLC/Q-TOF–MS-based metabolomics provide novel insight into the mechanism of action of anti-inflammatory drugs distinct from that afforded by traditional biological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ivanova PT, Milne SB, Forrester JS, Brown HA (2004) Mol Interv 4:86–96

    Article  CAS  Google Scholar 

  2. Xu GW (2008) Beijing: Science Press. pp. 161–162

  3. Attia N, Domingo N, Lorec A, Nakbi A, Hammami S, Ben HK, Portugal H, Lairon D, Hammami M, Chanussot F (2009) Clin Biochem 42:845–851

    Article  CAS  Google Scholar 

  4. Krauss RM (2010) Circulation 122:452–454

    Article  Google Scholar 

  5. Zhu C, Liang QL, Hu P, Wang YM, Luo GA (2011) Talanta 85:1711–1720

    Article  CAS  Google Scholar 

  6. de Vries R, Kappelle PJWH, Dallinga-Thie GM, Dullaart RPF (2011) Atherosclerosis 217:253–259

    Article  Google Scholar 

  7. Jeong RU, Lim S, Kim MO, Moon MH (2011) Anal Bioanal Chem 401:689–698

    Article  CAS  Google Scholar 

  8. Pasvogel AE, Miketova P, Moore IM (2010) Biol Res Nurs 11:325–331

    Article  CAS  Google Scholar 

  9. Boggara MB, Krishnamoorti R (2010) Biophys J 98:586–595

    Article  CAS  Google Scholar 

  10. Igarashi M, Ma K, Gao F, Kim HW, Rapoport SI, Rao JS (2011) J Alzheimers Dis 24:507–517

    CAS  Google Scholar 

  11. Fearon DT, Locksley RM (1996) Science 272:50–54

    Article  CAS  Google Scholar 

  12. Chen GY, Nunez G (2010) Nat Rev Immunol 10:826–837

    Article  CAS  Google Scholar 

  13. Zhang TT, Sun L, Liu R, Zhang D, Lan X, Huang C, Xin WY, Wang C, Zhang DM, Du GH (2012) Mol Pharmaceut 9:671–677

    Article  CAS  Google Scholar 

  14. Rouzer CA, Ivanova PT, Byrne MO, Milne SB, Marnett LJ, Brown HA (2006) Biochem 45:14795–14808

    Article  CAS  Google Scholar 

  15. Sun X, Lv ZY, Peng H, Fung MQ, Yang LL, Yang J, Zheng HQ, Liang JY, Wu ZD (2012) Parasitol Res 110:2429–2437

    Article  Google Scholar 

  16. Kim JK, Park GM (2012) Inflamm Res 61:319–325

    Article  CAS  Google Scholar 

  17. Raetz CRH, Garrett TA, Reynolds CM, Shaw WA, Moore JD, Smith DCJ, Ribeiro AA, Murphy RC, Ulevitch RJ, Fearns C, Reichart D, Glass CK, Benner C, Subramaniam S, Harkewicz R, Bowers-Gentry RC, Buczynski MW, Cooper JA, Deems RA, Dennis EA (2006) J Lipid Res 47:1097–1111

    Article  CAS  Google Scholar 

  18. Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB, Myers DS, Glass CK, Hardiman G, Reichart D, Merrill AHJ, Sullards MC, Wang E, Murphy RC, Raetz CRH, Garrett TA, Guan ZQ, Ryan AC, Russell DW, McDonald JG, Thompson BM, Shaw WA, Sud M, Zhao YH, Gupta S, Maurya MR, Fahy E, Subramaniam S (2010) J Biol Chem 285:39976–39985

    Article  CAS  Google Scholar 

  19. Lichtenberger LM (2001) Biochem Pharmacol 61:631–637

    Article  CAS  Google Scholar 

  20. Guillarme D, Nguyen DT, Rudaz S, Veuthey JL (2007) J Chromatogr A 1149:20–29

    Article  CAS  Google Scholar 

  21. She YQ, Song JA, Yang E, Zhao LL, Zhong YM, Rui W, Feng YF, Wu X (2014) Biomed Chromatogr 28:1744–1755

  22. Lombardi G, Varsaldi F, Miglio G, Papini MG, Battaglia A, Canonico PL (2002) Eur J Pharmacol 457:95–98

    Article  CAS  Google Scholar 

  23. Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  24. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, Van OB, Smilde AK (2006) Anal Chem 78:567–574

    Article  CAS  Google Scholar 

  25. Li Y, Richard B, John S, Benjamin BE, David H, Matthew T, Rudolf WW, Michael H, Brad AR, Jesse W, Bruce JJ, Steven GW, Carole LB, Craig DT, Matthew RL (2009) Anal Bioanal Chem 393:643–654

    Article  Google Scholar 

  26. Bylesjo M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) J Chemometr 20:341–351

    Article  Google Scholar 

  27. Allison LD, Livia SE, Cheng Z, Anthony BC, Demian RI, Liang C, Timothy AM, Micheal OK, Olga V, Olga VR, Graham C (2010) Anal Bioanal Chem 398:2969–2978

    Article  Google Scholar 

  28. Rui W, Feng YF, Jiang MM, Wang L, Zhang XM, Shi ZF (2011) Proced Eng 24:510–514

    Article  CAS  Google Scholar 

  29. Hsu HY, Wen MH (2002) J Biol Chem 277:22131–22139

    Article  CAS  Google Scholar 

  30. Choi EY, Hwang YM, Lee JY, Choi IS, Jin JY, Ko JS, Kim SJ (2007) J Periodont Res 42:350–360

    Article  CAS  Google Scholar 

  31. Funatogawa K, Matsuura M, Nakano M, Kiso M, Hasegawa A (1998) Infect Immun 66:5792–5798

    CAS  Google Scholar 

  32. Brynskov J, Foegh P, Pedersen G, Ellervik C, Kirkegaard T, Bingham A, Saermark T (2002) Gut 51:37–43

    Article  CAS  Google Scholar 

  33. Wehrens R, Franceschi P, Vrhovsek U, Mattivi F (2011) Anal Chim Acta 705:15–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (nos. 21275036 and 81202429).

Conflict of interest

We declare that all authors have read the manuscript conscientiously, and all agree with its publication. The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhao, L., Peng, H. et al. Search for Potential Biomarkers by UPLC/Q-TOF–MS Analysis of Dynamic Changes of Glycerophospholipid Constituents of RAW264.7 Cells Treated With NSAID. Chromatographia 78, 211–220 (2015). https://doi.org/10.1007/s10337-014-2822-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2822-6

Keywords

Navigation