Skip to main content

Advertisement

Log in

Social foraging European shags: GPS tracking reveals birds from neighbouring colonies have shared foraging grounds

Journal of Ornithology Aims and scope Submit manuscript

Abstract

Developments in tracking technologies have enhanced our understanding of the behaviours of many seabird species. However few studies have examined the social aspects of seabird foraging behaviour, despite the effect this might have on the distribution of foraging areas and the differences that might arise between colonies. Here we use bird-borne GPS and behavioural observation to study the social foraging behaviour and habitat use of breeding shags from three breeding colonies in the Isles of Scilly, UK. Thirteen breeding shags from three colonies (six at two colonies and a single bird from another) were tracked between 2010 and 2012 and related to observations of conspecific foraging aggregations (2013–2014). Tracked shags had short foraging ranges (1.74 ± 1.6 km) mostly travelling to shallow waters between the islands and observations revealed that many shags foraged in large social groups that were consistent in time and space. There were also no clear differences in foraging distributions among colonies—birds shared similar foraging grounds. Our finding provides important insight into the use of social information among foraging seabirds and how this may lead to shared foraging areas, as well as space partitioning.

Zusammenfassung

Gemeinsame Nahrungssuche bei Krähenscharben: GPS Ortung zeigt, dass sich Vögel benachbarter Kolonien Nahrungsgebiete teilen Die Weiterentwicklung vieler Ortungstechniken hat unser Wissen über das Verhalten von Seevögeln verbessert. Es gibt jedoch wenige Studien, die die sozialen Aspekte der Nahrungssuche untersucht haben, obwohl Einflüsse auf die Verteilung der Nahrungsgebiete und Unterschiede zwischen Kolonien zu erwarten sind. Wir haben GPS Informationen von besenderten brütenden Krähenscharben mit Verhaltensbeobachtungen kombiniert, um die gemeinsame Nahrungssuche und Nutzung der Habitate dreier Brutkolonien auf den Scilly Inseln in Schottland zu studieren. Wir haben 13 brütende Krähenscharben, die aus drei Kolonien stammten (sechs aus jeweils zwei Kolonien, ein Individuum aus einer dritten Kolonie) zwischen 2010 und 2012 verfolgt und mit innerartlichen Ansammlungen nahrungssuchender Vögel verglichen. Besenderte Krähenscharben hatten kurze Nahrungswege (1.74 ± 1.6 km) und bewegten sich vor allem in flachen Bereichen zwischen den Inseln. Die Nahrungstrupps waren groß und über Raum und Zeit konstant. Auch fanden wir keine deutlichen Unterschiede in der Wahl der Nahrungsgebiete zwischen den Kolonien. Die drei Kolonien nutzten die gleichen Nahrungsgebiete. Unsere Ergebnisse bieten wichtige Hinweise darüber, wie gemeinsam jagende Seevögel soziale Informationen nutzen wie dies zur gemeinsamen Nutzung von Nahrungsgebieten und zur Raumaufteilung führen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Anker-Nilssen T (2009) Key-site monitoring on Røst in 2008 SEAPOP Short Report:10

  • Barnard C, Thompson D, Stephens H (1982) Time budgets, feeding efficiency and flock dynamics in mixed species flocks of lapwings, golden plovers and gulls. Behaviour 80:44–69

    Article  Google Scholar 

  • Barta Z, Giraldeau L-A (2001) Breeding colonies as information centers: a reappraisal of information-based hypotheses using the producer-scrounger game. Behav Ecol 12:121–127. doi:10.1093/beheco/12.2.121

    Article  Google Scholar 

  • Bartoń K (2014) MuMIn: multi-model inference. R package version 1.10.5

  • Beauchamp G (2001) Should vigilance always decrease with group size? Behav Ecol Sociobiol 51:47–52

    Article  Google Scholar 

  • Beauchamp G, Belisle M, Giraldeau L-A (1997) Influence of conspecific attraction on the spatial distribution of learning foragers in a patchy habitat. J Anim Ecol 66:671–682

    Article  Google Scholar 

  • Benoit-Bird KJ, Au WW (2009) Cooperative prey herding by the pelagic dolphin, Stenella longirostris. J Acoust Soc Am 125:125–137

    Article  PubMed  Google Scholar 

  • Bijleveld AI, Egas M, Van Gils JA, Piersma T (2010) Beyond the information centre hypothesis: communal roosting for information on food, predators, travel companions and mates? Oikos 119:277–285. doi:10.1111/j.1600-0706.2009.17892.x

    Article  Google Scholar 

  • Birt V, Birt T, Goulet D, Cairns D, Montevecchi W (1987) Ashmole’s halo: direct evidence for prey depletion by a seabird. Marine Ecol Prog Ser 40:205–208

    Article  Google Scholar 

  • Bogdanova MI et al (2014) Among-year and within-population variation in foraging distribution of European shags Phalacrocorax aristotelis over two decades: implications for marine spatial planning. Biol Conserv 170:292–299. doi:10.1016/j.biocon.2013.12.025

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Calenge C (2006) The package adehabitat for the R software: tool for the analysis of space and habitat use by animals. Ecol Model 197:1035

    Article  Google Scholar 

  • Cresswell W (1994) Flocking is an effective anti-predation strategy in redshanks, Tringa totanus. Anim Behav 47:433–442

    Article  Google Scholar 

  • Dall SR, Giraldeau L-A, Olsson O, McNamara JM, Stephens DW (2005) Information and its use by animals in evolutionary ecology. Trends Ecol Evol 20:187–193

    Article  PubMed  Google Scholar 

  • Danchin E, Giraldeau L-A, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491

    Article  PubMed  CAS  Google Scholar 

  • Davoren GK, Montevecchi WA (2003) Consequences of foraging trip duration on provisioning behaviour and fledging condition of common murres Uria aalgae. J Avian Biol 34:44–53. doi:10.1034/j.1600-048X.2003.03008.x

    Article  Google Scholar 

  • Davoren GK, Montevecchi WA, Anderson JT (2003) Search strategies of a pursuit-diving marine bird and the persistence of prey patches. Ecol Monogr 73:463–481

    Article  Google Scholar 

  • Dermody BJ, Tanner CJ, Jackson AL (2011) The Evolutionary Pathway to Obligate Scavenging in Gyps Vultures. PLoS ONE 6:e24635. doi:10.1371/journal.pone.0024635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobson FS, Jouventin P (2007) How slow breeding can be selected in seabirds: testing Lack’s hypothesis. Proc R Soc Lond Ser B 274:275–279. doi:10.1098/rspb.2006.3724

    Article  Google Scholar 

  • ESRI (2012) ArcGIS Desktop: Release 10.1. Redlands, CA: Environmental Systems Research Institute

  • Evans RM (1982) Foraging-flock recruitment at a black-billed gull colony: implications for the information center hypothesis. Auk 99:24–30

    Article  Google Scholar 

  • Evans JC, Votier SC, Dall SRX (2015) Information use in colonial living. Biol Rev:1–16 doi:10.1111/brv.12188

  • Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84:282–288. doi:10.2307/3107884

    Article  Google Scholar 

  • Furness RW, Wade HM, Robbins AMC, Masden EA (2012) Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices. ICES J Mar Sci J du Conseil 69:1466–1479. doi:10.1093/icesjms/fss131

    Article  Google Scholar 

  • Gibson RN (2003) Go with the flow: tidal migration in marine animals. Hydrobiologia 503:153–161

    Article  Google Scholar 

  • Goyert HF, Manne LL, Veit RR (2014) Facilitative interactions among the pelagic community of temperate migratory terns, tunas and dolphins. Oikos 123:1400–1408. doi:10.1111/oik.00814

    Article  Google Scholar 

  • Grecian WJ, Inger R, Attrill MJ, Bearhop S, Godley BJ, Witt MJ, Votier SC (2010) Potential impacts of wave-powered marine renewable energy installations on marine birds. Ibis 152:683–697. doi:10.1111/j.1474-919X.2010.01048.x

    Article  Google Scholar 

  • Heaney V, Lock L, St Pierre P, Brown A (2008) Breeding seabirds on the Isles of Scilly. British Birds 101:418–438

    Google Scholar 

  • Hoffman W, Heinemann D, Wiens JA (1981) The ecology of seabird feeding flocks in Alaska. Auk 98:437–456

    Google Scholar 

  • Hofmann DA, Gavin MB (1998) Centering decisions in hierarchical linear models: implications for research in organizations. J Manag 24:623–641

    Google Scholar 

  • Holm KJ, Burger AE (2002) Foraging behavior and resource partitioning by diving birds during winter in areas of strong tidal currents. Waterbirds 25:312–325

    Article  Google Scholar 

  • Hunt GL (1990) The pelagic distribution of marine birds in a heterogeneous environment. Polar Res 8:43–54

    Article  Google Scholar 

  • Hunt GL (1991) Occurrence of polar seabirds at sea in relation to prey concentrations and oceanographic factors. Polar Res 10:553–560. doi:10.1111/j.1751-8369.1991.tb00673.x

    Article  Google Scholar 

  • Irons DB (1998) Foraging area fidelity of individual seabirds in relation to tidal cycles and flock feeding. Ecology 79:647–655. doi:10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2

  • Kotzerka J, Hatch SA, Garthe S (2011) Evidence for foraging-site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the Gulf of Alaska. Condor 113:80–88

    Article  Google Scholar 

  • Lavielle M (1999) Detection of multiple changes in a sequence of dependent variables. Stoch Process Appl 83:79–102

    Article  Google Scholar 

  • Lavielle M (2005) Using penalized contrasts for the change-point problem Signal processing 85:1501–1510

    Google Scholar 

  • Macer C (1966) Sand eels (Ammodytidae) in the south-western North Sea; their biology and fishery Ministry of Agriculture, Fisheries and Food, FishInvestig Ser II 24:No. 6

  • Machovsky-Capuska G, Hauber M, Libby E, Amiot C, Raubenheimer D (2014) The contribution of private and public information in foraging by Australasian gannets. Anim Cogn 17:849–858. doi:10.1007/s10071-013-0716-x

    Article  PubMed  Google Scholar 

  • Morris R (2007) A nature conservation perspective of port-related dredging. Proc ICE Marit Eng 160:19–23

    Article  Google Scholar 

  • Nelson B (2005a) Pelicans, cormorants and their relatives Pelecanidae, Sulidae, Phalacrocoracidae, Anhingidae, Fregatidae, Phaethontidae. Oxford University Press, Oxford

    Google Scholar 

  • Nelson B (2005b) Pelicans, cormorants and their relatives: Pelecanidae, Sulidae, Phalacrocoracidae, Anhingidae, Fregatidae, Phaethontidae. Oxford University Press, Oxford

    Google Scholar 

  • Noren SR, Biedenbach G, Edwards EF (2006) Ontogeny of swim performance and mechanics in bottlenose dolphins (Tursiops truncatus). J Exp Biol 209:4724–4731

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) NLME: linear and nonlinear mixed effects models

  • Porter JM, Sealy SG (1982) Dynamics of seabird multispecies feeding flocks: age-related feeding behaviour. Behaviour 81:91–109. doi:10.2307/4534200

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Racine F, Giraldeau L-A, Patenaude-Monette M, Giroux J-F (2012) Evidence of social information on food location in a ring-billed gull colony, but the birds do not use it. Anim Behav 84:175–182. doi:10.1016/j.anbehav.2012.04.028

    Article  Google Scholar 

  • Raya Rey A, Bost C-A, Schiavini A, Pütz K (2010) Foraging movements of Magellanic penguins Spheniscus magellanicus in the Beagle Channel, Argentina, related to tide and tidal currents. J Ornithol 151:933–943. doi:10.1007/s10336-010-0531-y

    Article  Google Scholar 

  • Reay P (1970) Synopsis of biological data on North Atlantic sandeels of the genus Ammodytes (A. tobianus, A. dubius, A. americanus and A. marinus), vol 82. Food and Agriculture Organization of the United Nations

  • Richner H, Heeb P (1996) Communal life: honest signaling and the recruitment center hypothesis. Behav Ecol 7:115–118. doi:10.1093/beheco/7.1.115

    Article  Google Scholar 

  • Roberts G (1996) Why individual vigilance declines as group size increases. Anim Behav 51:1077–1086

    Article  Google Scholar 

  • Sapoznikow A, Quintana F (2003) Foraging behavior and feeding locations of Imperial Cormorants and Rock Shags breeding sympatrically in Patagonia, Argentina. Waterbirds 26:184–191. doi:10.2307/1522550

    Article  Google Scholar 

  • Scales KL, Miller PI, Embling CB, Ingram SN, Pirotta E, Votier SC (2014) Mesoscale fronts as foraging habitats: composite front mapping reveals oceanographic drivers of habitat use for a pelagic seabird. Interface 11(100). doi:10.1098/rsif.2014.0679

  • Scott BE, Langton R, Philpott E, Waggitt JJ (2014) Seabirds and Marine Renewables: Are we Asking the Right Questions? In: Shields MA, Payne AIL (eds) Marine Renewable Energy Technology and Environmental Interactions. Humanity and the Sea. Springer, Netherlands, pp 81–92. doi:10.1007/978-94-017-8002-5_7

  • Silverman ED, Veit RR, Nevitt GA (2004) Nearest neighbors as foraging cues: information transfer in a patchy environment. Mar Ecol Prog Ser 277:25–36. doi:10.3354/meps277025

    Article  Google Scholar 

  • Soanes LM, Arnould JPY, Dodd SG, Milligan G, Green JA (2014) Factors affecting the foraging behaviour of the European shag: implications for seabird tracking studies. Mar Biol 161:1335–1348. doi:10.1007/s00227-014-2422-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Templeton JJ, Giraldeau L-A (1995) Patch assessment in foraging flocks of European starlings: evidence for the use of public information. Behav Ecol 6:65–72

    Article  Google Scholar 

  • Thaxter CB et al (2012) Seabird foraging ranges as a preliminary tool for identifying candidate Marine Protected Areas. Biol Conserv 156:53–61. doi:10.1016/j.biocon.2011.12.009

    Article  Google Scholar 

  • Thiebault A, Mullers R, Pistorius P, Meza-Torres MA, Dubroca L, Green D, Tremblay Y (2014) From colony to first patch: processes of prey searching and social information in Cape Gannets. Auk 131:595–609. doi:10.1642/auk-13-209.1

    Article  Google Scholar 

  • Velando A, Freire J (2002) Population modelling of European shags (Phalacrocorax aristotelis) at their southern limit: conservation implications. Biol Conserv 107:59–69. doi:10.1016/S0006-3207(02)00044-7

    Article  Google Scholar 

  • Velando A, Munilla I (2011) Disturbance to a foraging seabird by sea-based tourism: implications for reserve management in marine protected areas. Biol Conserv 144:1167–1174

    Article  Google Scholar 

  • Votier SC, Grecian WJ, Patrick S, Newton J (2011) Inter-colony movements, at-sea behaviour and foraging in an immature seabird: results from GPS-PPT tracking, radio-tracking and stable isotope analysis. Mar Biol 158:355–362

    Article  CAS  Google Scholar 

  • Votier SC, Bicknell A, Cox SL, Scales KL, Patrick SC (2013) A bird’s eye view of discard reforms: bird-borne cameras reveal seabird/fishery interactions. PLoS ONE 8:e57376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waggitt J, Briffa M, Grecian W, Newton J, Patrick S, Stauss C, Votier S (2014) Testing for sub-colony variation in seabird foraging behaviour: ecological and methodological consequences for understanding colonial living. Mar Ecol Prog Ser 498:275–285

    Article  Google Scholar 

  • Wakefield ED et al (2013) Space partitioning without territoriality in gannets. Science 341:68–70. doi:10.1126/science.1236077

    Article  PubMed  CAS  Google Scholar 

  • Wanless S, Harris MP (1993) Use of Mutually Exclusive Foraging Areas by Adjacent Colonies of Blue-Eyed Shags (Phalacrocorax atriceps) at South Georgia. Colon Waterbirds 16:176–182. doi:10.2307/1521435

    Article  Google Scholar 

  • Wanless S, Harris MP, Morris JA (1991) Foraging range and feeding locations of Shags Phalacrocorax aristotelis during chick rearing. Ibis 133:30–36. doi:10.1111/j.1474-919X.1991.tb04806.x

    Article  Google Scholar 

  • Wanless S, Corfield T, Harris MP, Buckland ST, Morris JA (1993) Diving behaviour of the shag Phalacrocorax aristotelis (Aves: Pelecaniformes) in relation to water depth and prey size. J Zoo 231:11–25. doi:10.1111/j.1469-7998.1993.tb05349.x

    Article  Google Scholar 

  • Ward P, Zahavi A (1973a) The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis 115:517–534. doi:10.1111/j.1474-919X.1973.tb01990.x

    Article  Google Scholar 

  • Ward P, Zahavi A (1973b) The importance of certain assemblages of birds as “information-centres” for food finding. Ibis 115:517–534

    Article  Google Scholar 

  • Watanuki Y, Daunt F, Takahashi A, Newell M, Wanless S, Sato K, Miyazaki N (2008) Microhabitat use and prey capture of a bottom-feeding top predator, the European Shag, shown by camera loggers. Mar Ecol Prog Ser 356:283–293

    Article  Google Scholar 

  • Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep Sea Res Part II Top Stud Oceanogr 54:211–223

    Article  Google Scholar 

  • Weimerskirch H, Wilson R, Lys P (1997) Activity pattern of foraging in the wandering albatros: a marine predator with two modes of prey searching Oceanographic Literature Review 44

  • Weimerskirch H, Bertrand S, Silva J, Marques JC, Goya E (2010) Use of social information in seabirds: compass rafts indicate the heading of food patches. PLoS ONE 5:e9928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168

    Article  Google Scholar 

  • Zamon JE (2003) Mixed species aggregations feeding upon herring and sandlance schools in a nearshore archipelago depend on flooding tidal currents. Mar Ecol Prog Ser 261:243–255

    Article  Google Scholar 

  • Žydelis R, Small C, French G (2013) The incidental catch of seabirds in gillnet fisheries: a global review. Biol Conserv 162:76–88. doi:10.1016/j.biocon.2013.04.002

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Richard Bufton, David Evans, Liz Mackley and the volunteers who assisted with data collection; Vicky Heaney for population data and the Isles of Scilly wildlife trust for assistance and permissions. GPS tracking in 2010 and 2011 was carried out as part of the FAME (Future of the Atlantic Marine Environment) project funded through the Atlantic Area programme of the EU regional development fund. This project was funded by a studentship from the European Social Fund’s convergence programme, in collaboration with Jim Standing at the Fourth Element. Authorisations to capture, ring and tag shags with GPS devices were provided by the BTO. All animals were handled in accordance with BTO guidelines to minimise the handling time and stress.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian C. Evans.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10336_2015_1241_MOESM1_ESM.eps

Example graph of variance in logged first-passage time, as a function of radius r, of each trip of a single bird. The radii at which peaks of variance occurred were used to calculate a mean ARS scale for this individual (EPS 16 kb)

10336_2015_1241_MOESM2_ESM.pdf

Example of a single foraging trip, showing a bird (number 7) leaving a rock, engaging in ARS twice and returning to its’ home colony. Foraging hotspots represent the top 20 % of the kernel UD calculated from identified ARS for this trip, and are shown in relation to bathymetry (PDF 1313 kb)

Supplementary Table 1 (DOCX 14 kb)

Supplementary Table 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, J.C., Dall, S.R.X., Bolton, M. et al. Social foraging European shags: GPS tracking reveals birds from neighbouring colonies have shared foraging grounds. J Ornithol 157, 23–32 (2016). https://doi.org/10.1007/s10336-015-1241-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1241-2

Keywords

Navigation