Skip to main content

Advertisement

Log in

Low nest survival of a breeding shorebird in Bohai Bay, China

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Nest survival plays an important role in avian demography because of its influence on both individual fitness and population growth. It is also known to vary within species due to local factors such as climate, predation, substrate, and disturbance, among others. Therefore, an understanding of the relative influence of local factors on nest survival is of critical importance for the formulation of appropriate avian conservation and management policies/programs. Over the past 50 years the Yellow Sea has lost almost 65 % of its original intertidal habitats due to land reclamation and development. There has also been a concomitant and rapid decline in the populations of Kentish plover (Charadrius alexandrinus) in East Asia, but the proximate causes of this decline are poorly understood. To gain a better understanding of this conservation issue, we investigated Kentish plover nest survival in Bohai Bay, China, using Program MARK to model the daily survival rate (DSR) of 417 nests. We found that in terms of nest survival, that for the Kentish plover populations in Bohai Bay [0.925 ± 0.004 (±95 % confidence interval)] is the lowest reported worldwide for this species. The most common cause of nest failure was related to anthropogenic disturbance. We determined that nests occupying salt crystallization habitat had the highest hatching success and that initiation date, nest age, and nest density had quadratic effects on DSR. If low nest survival persists for consecutive years, fecundity will unlikely compensate for adult mortality, resulting in dramatic population declines of plovers in Bohai Bay. We therefore recommend that the Local Authority managers responsible for local environmental management act accordingly to create protected alternative nesting habitat for plovers in this region.

Zusammenfassung

Niedrige Überlebensrate von Nestern eines brütenden Watvogels in der Bohai-Bucht, China

Die Überlebensrate von Nestern spielt wegen ihres Einflusses auf individuelle Fitness und Populationswachstum eine wichtige Rolle für die Demographie von Vogelpopulationen. Es ist bekannt, dass die Überlebensrate von Nestern innerhalb einer Art aufgrund von Faktoren wie Klima, Prädation, Substrat und Störungen variiert. Daher ist das Einschätzen von lokalen Einflüssen auf die Überlebensrate von Nestern von zentraler Bedeutung für das Erstellen von angemessenen Vogelschutz- und Managementplänen. Das Gelbe Meer hat über die letzten 50 Jahre beinahe 65 % seines ursprünglichen Habitats im Gezeitenbereich durch Landgewinnung und Entwicklung eingebüßt. Parallel hierzu sind Populationen des Seeregenpfeifers (Charadrius alexandrinus) in Ostasien schnell zurückgegangen, wobei die unmittelbaren Gründe hierfür nur unzureichend bekannt sind. Um diese Naturschutzproblematik zu bestätigen, untersuchten wir die Überlebensrate von Nestern des Seeregenpfeifers in der Bohai-Bucht, China. Wir nutzen das Programm MARK, um die tägliche Überlebensrate (DSR) von 417 Nestern zu modellieren, und fanden heraus, dass Nester von Seeregenpfeifern, die in der Bohai-Bucht brüten, die weltweit niedrigste bekannte Überlebensrate (0.925 ± 0.004 [±95 % KI]) für diese Art aufweisen. Der häufigste Auslöser für das Scheitern eines Nestes war anthropogene Störung. Unsere Studie zeigt, dass Nester in Salzkristallisationshabitaten den höchsten Schlupferfolg aufwiesen und dass der Zeitpunkt des Nestbeginns, das Nestalter und die Nesterdichte quadratische Effekte auf DSR hatten. Sollte die niedrige Überlebensrate für mehrere aufeinanderfolgende Jahre anhalten, ist es unwahrscheinlich, dass die Fortpflanzungsrate die adulte Sterblichkeitsrate kompensiert, was zu dramatischen Bestandsrückgängen der Regenpfeifer in der Bohai-Bucht führen würde. Daher schlagen wir vor, dass Umweltmanager vor Ort entsprechend handeln und geschützte alternative Bruthabitate für die Regenpfeifer in dieser Region schaffen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AlRashidi M, Kosztolanyi A, Shobrak M, Szekely T (2011) Breeding ecology of the Kentish plover, Charadrius alexandrinus, in the Farasan Islands, Saudi Arabia (Aves: Charadriiformes). Zool Middle East 53:15–24

    Google Scholar 

  • Amano T, Szekely T, Koyama K, Amano H, Sutherland WJ (2010) A framework for monitoring the status of populations: an example from wader populations in the East Asian–Australasian flyway. Biol Conserv 143:2238–2247

    Google Scholar 

  • Amano T, Szekely T, Koyama K, Amano H, Sutherland WJ (2012) Addendum to “A framework for monitoring the status of populations: an example from wader populations in the East Asian–Australasian flyway” Biological Conservation, 143, 2238–2247. Biol Conserv 145:278–295

    Google Scholar 

  • Antolos M, Roby DD, Lyons DE, Anderson SK, Collis K (2006) Effects of nest density, location, and timing on breeding success of Caspian terns. Waterbirds 29:465–472

    Google Scholar 

  • Beauchamp WD, Koford RR, Nudds TD, Clark RG, Johnson DH (1996) Long-term declines in nest success of prairie ducks. J Wildl Manag 60:247–257

    Google Scholar 

  • Bolduc F, Guillemette M (2003) Human disturbance and nesting success of Common Eiders: interaction between visitors and gulls. Biol Conserv 110:77–83

    Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    PubMed  Google Scholar 

  • Buick A, Paton D (1989) Impact of off-road vehicles on the nesting success of Hooded plovers Charadrius rubricollis in the Coorong region of South Australia. Emu 89:159–172

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information—theoretic approach. Springer, New York

    Google Scholar 

  • Byrd GV, Trapp JL, Zeillemaker C (1994) Removal of introduced foxes: a case study in restoration of native birds. Trans North Am Wildl Nat Resour Conf 59:317–321

  • Chase MK, Nur N, Geupel GR, Stouffer P (2005) Effects of weather and population density on reproductive success and population dynamics in a song sparrow (Melospiza melodia) population: a long-term study. Auk 122:571–592

    Google Scholar 

  • Colwell MA, Meyer JJ, Hardy MA, Mcallister SE, Transou AN, Levalley RR, Dinsmore SJ (2011) Western Snowy plovers Charadrius alexandrinus nivosus select nesting substrates that enhance egg crypsis and improve nest survival. Ibis 153:303–311

    Google Scholar 

  • Cooch E, White G (2006) Program MARK: a gentle introduction. Available at: http://www.phidot.org/software/mark/docs/book/

  • Cox WA, Thompson F III, Faaborg J (2012) Landscape forest cover and edge effects on songbird nest predation vary by nest predator. Landscape Ecol 27:659–669

    Google Scholar 

  • Delaney S, Scott DA, Dodman T, Stroud DA (2009) An atlas of wader populations in Africa and Western Eurasia. Wetlands International Wageningen, Wageningen

    Google Scholar 

  • Dinsmore SJ, White GC, Knopf FL (2002) Advanced techniques for modeling avian nest survival. Ecology 83:3476–3488

    Google Scholar 

  • Drever MC, Clark RG (2007) Spring temperature, clutch initiation date and duck nest success: a test of the mismatch hypothesis. J Anim Ecol 76:139–148

    Google Scholar 

  • Eberhart-Phillips LJ, Colwell MA (2014). Conservation challenges of a sink: the viability of an isolated population of the Snowy plover. Bird Conserv Int 24:327–341

  • Ellis JC, Good TP (2006) Nest attributes, aggression, and breeding success of gulls in single and mixed species subcolonies. Condor 108:211–219

    Google Scholar 

  • Fletcher RJ, Koford RR, Seaman DA (2006) Critical demographic parameters for declining songbirds breeding in restored grasslands. J Wildl Manag 70:145–157

    Google Scholar 

  • Götmark F, Andersson M (1984) Colonial breeding reduces nest predation in the Common gull (Larus canus). Anim Behav 32:485–492

    Google Scholar 

  • Grant TA, Shaffer TL, Madden EM, Pietz PJ, Johnson D (2005) Time-specific variation in passerine nest survival: new insights into old questions. Auk 122:661–672

    Google Scholar 

  • Haas CA (1998) Effects of prior nesting success on site fidelity and breeding dispersal: an experimental approach. Auk 115:929–936

    Google Scholar 

  • Hardy MA, Colwell MA (2012) Factors Influencing Snowy plover nest survival on ocean-fronting beaches in coastal Northern California. Waterbirds 35:503–511

    Google Scholar 

  • Hong S, Higashi S (2008) Nesting site preference and hatching success of the Kentish plover (Charadrius alexandrinus) in the Nakdong Estuary, Busan, Republic of Korea. J Ecol Field Biol 31:201–206

    Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Google Scholar 

  • Kupper C, Augustin J, Kosztolanyi A, Burke T, Figuerola J, Szekely T (2009) Kentish versus Snowy plover: phenotypic and genetic analyses of Charadrius alexandrinus reveal divergence of Eurasian and American subspecies. Auk 126:839–852

    Google Scholar 

  • Lei WP (2010) Studies on migration and Habitat use of waterbirds at typical wetlands around Bohai Bay. MSc thesis, Beijing Normal University, Beijing, China

  • Liu WT, Chen PH (2002) Hatching success and causes of hatching failure of Kentish plover Charadrius alexandrinus in Changhua Coastal Industrial Park. Tunghai Sci 4:85–101

    Google Scholar 

  • Mabee TJ (1997) Using eggshell evidence to determine nest fate of shorebirds. Wilson Bull 109:307–313

    Google Scholar 

  • Marchant J, Prater T (1986) Shorebirds: an identification guide to the waders of the world. A&C Black, London

    Google Scholar 

  • Martin TE (1988) On the advantage of being different: nest predation and the coexistence of bird species. Proc Natl Acad Sci USA 85:2196–2199

    CAS  PubMed  Google Scholar 

  • Maxson SJ, Fieberg JR, Riggs MR (2007) Black tern nest habitat selection and factors affecting nest success in northwestern Minnesota. Waterbirds 30:1–9

    Google Scholar 

  • Minias P (2014) Evolution of within-colony distribution patterns of birds in response to habitat structure. Behav Ecol Sociobiol 68:851–859

    PubMed  PubMed Central  Google Scholar 

  • Montalvo T, Figuerola J (2006) The distribution and conservation of the Kentish plover Charadrius alexandrinus in Catalonia. Revista Catalana d’Ornitologia 22:1–8

    Google Scholar 

  • Murray NJ, Clemens RS, Phinn SR, Possingham HP, Fuller RA (2014) Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front Ecol Environ 12:267–272

    Google Scholar 

  • Newmark WD, Stanley TR (2011) Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proc Natl Acad Sci USA 108:11488–11493

    CAS  PubMed  Google Scholar 

  • Nol E, Brooks RJ (1982) Effects of predator exclosures on nesting success of Killdeer. J Field Ornithol 53:263–268

    Google Scholar 

  • Patrick AM (2013) Semi-colonial nesting in the Snowy plover. MSc thesis, Humboldt State University, Arcata, California

  • Pienkowski MW (1984) Breeding biology and population dynamics of Ringed plovers Charadrius hiaticula in Britain and Greenland: nest-predation as a possible factor limiting distribution and timing of breeding. J Zool 202:83–114

    Google Scholar 

  • Pieron MR, Rohwer FC (2010) Effects of large-scale predator reduction on nest success of upland nesting ducks. J Wildl Manag 74:124–132

    Google Scholar 

  • Rimmer DW, Deblinger RD (1990) Use of predator exclosures to protect Piping plover nests. J Field Ornithol 61:217–223

    Google Scholar 

  • Ringelman KM, Eadie JM, Ackerman JT (2014) Adaptive nest clustering and density-dependent nest survival in dabbling ducks. Oikos 123:239–247

    Google Scholar 

  • Robinson SK (1985) Coloniality in the Yellow-rumped Cacique as a defense against nest predators. Auk 102:506–519

    Google Scholar 

  • Rodríguez C, Bustamante J (2003) The effect of weather on Lesser kestrel breeding success: can climate change explain historical population declines? J Anim Ecol 72:793–810

    Google Scholar 

  • Ronka A, Koivula K, Ojanen M, Pakanen V-M, PohjoismÄKi M, Rannikko K, Rauhala P (2006) Increased nest predation in a declining and threatened Temminck’s stint Calidris temminckii population. Ibis 148:55–65

    Google Scholar 

  • Sæther B-E, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653

    Google Scholar 

  • Schulz R, Stock M (1993) Kentish plovers and tourists: competitors on sandy coasts. Wader Study Group Bull 68:83–91

    Google Scholar 

  • Smith PA, Wilson S (2010) Intraseasonal patterns in shorebird nest survival are related to nest age and defence behaviour. Oecologia 163:613–624

    PubMed  Google Scholar 

  • Smith PA, Gilchrist HG, Smith JNM (2007) Effects of nest habitat, food, and parental behavior on shorebird nest success. Condor 109:15–31

    Google Scholar 

  • Stephens SE, Rotella JJ, Lindberg MS, Taper ML, Ringelman JK (2005) Duck nest survival in the Missouri Coteau of North Dakota: landscape effects at multiple spatial scales. Ecol Appl 15:2137–2149

    Google Scholar 

  • Sugden LG, Beyersbergen GW (1986) Effect of density and concealment on American crow predation of simulated duck nests. J Wildl Manag 50:9–14

    Google Scholar 

  • Székely T (1992) Reproduction of Kentish plover Charadrius alexandrinus in grasslands and fish-ponds: the habitat mal-assessment hypothesis. Aquila 99:59–68

    Google Scholar 

  • Szekely T, Karsai I, Williams TD (1994) Determination of clutch-size in the Kentish Plover Charadrius alexandrinus. Ibis 136:341–348

    Google Scholar 

  • Székely T, Kosztolányi A, Küpper C (2008) Practical guide for investigating breeding ecology of Kentish plover Charadrius alexandrinus. University of Bath, Bath

    Google Scholar 

  • Szentirmai I, Szekely T (2004) Diurnal variation in nest material use by the Kentish plover Charadrius alexandrinus. Ibis 146:535–537

    Google Scholar 

  • Tapper SC, Potts GR, Brockless MH (1996) The effect of an experimental reduction in predation pressure on the breeding success and population density of grey partridges Perdix perdix. J Appl Ecol 33:965–978

    Google Scholar 

  • Tinbergen N, Impekoven M, Franck D (1967) An experiment on spacing-out as a defence against predation. Behaviour 28:307–321

    Google Scholar 

  • US Fish and Wildlife Service (USFWS) (1993) Endangered and threatened wildlife and plants; determination of threatened status for the Pacific coast population of the western Snowy plover; final rule. Fed Regist 58:12864–12874

    Google Scholar 

  • Varela SAM, Danchin E, Wagner RH (2007) Does predation select for or against avian coloniality? A comparative analysis. J Evol Biol 20:1490–1503

    CAS  PubMed  Google Scholar 

  • Warriner JS, Warriner JC, Page GW, Stenzel LE (1986) Mating system and reproductive success of a small population of polygamous Snowy plovers. Wilson Bull 98:15–37

    Google Scholar 

  • Wilson S, Martin K, Hannon SJ (2007) Nest survival patterns in Willow Ptarmigan: influence of time, nesting stage, and female characteristics. Condor 109:377–388

    Google Scholar 

  • Yang HY, Chen B, Barter M, Piersma T, Zhou CF, Li FS, Zhang ZW (2011) Impacts of tidal land reclamation in Bohai Bay, China: ongoing losses of critical Yellow Sea waterbird staging and wintering sites. Bird Conserv Int 21:241–259

    Google Scholar 

  • Yasue M, Dearden P (2006) The potential impact of tourism development on habitat availability and productivity of Malaysian plovers Charadrius peronii. J Appl Ecol 43:978–989

    Google Scholar 

  • Yu Y, Pei X (1996) Studies on the breeding ecology of Charadrius alexandrinus dealbatus. In: Study on Chinese ornithology. China Forestry Publishing House, Beijing, pp 305–308

Download references

Acknowledgments

This study was supported by National Basic Research Program of China (No. 2006CB403305), United Foundation for Natural Science of National Natural Science Foundation of China and People’s Government of Guangdong Province (No. U0833005) and the open project of State Key Laboratory of Biocontrol, Sun Yat-sen University. We would especially like to thank Hongyan Yang and Weipan Lei who provided detailed advice and comments on our study. We also thank Zhiqin Ma, Zao Wang, and Mengjie Sun for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwang Zhang.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Que, P., Chang, Y., Eberhart-Phillips, L. et al. Low nest survival of a breeding shorebird in Bohai Bay, China. J Ornithol 156, 297–307 (2015). https://doi.org/10.1007/s10336-014-1126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1126-9

Keywords

Navigation