Skip to main content
Log in

Local haemoparasites in introduced wetland passerines

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

When colonizing a new area, introduced species may lose their original haemoparasites. If the local parasites are unable to infect the novel introduced hosts, these may gain a fitness advantage over their local competitors. Alternatively, the introduced species may be susceptible to local parasites and enter the local transmission dynamics. We studied these two possibilities in communities of wetland passerines infected with haemosporidians (genera Haemoproteus and Plasmodium) in Portugal, southwest Europe. Four introduced and six native (resident and breeding migrant) passerine species were tested for haemosporidians in four reed beds. Our results suggest that the introduced species have lost their original haemoparasites upon colonization and entered the local transmission cycle. Two local Plasmodium lineages infected the exotic species: one of them (SGS1) was the most host generalist and prevalent lineage in the native species, so was expected to be present in the exotics at random. The other lineage (PADOM01) was rarer in the sampled community, but was present in native hosts that are phylogenetically close to the infected exotic species; therefore, the colonization of the exotic host by PADOM01 seems to be constrained by the parasite’s specialization and by phylogenetic factors. When phylogeny was controlled for, there were no significant differences in infection prevalence and number of lineages between exotics and natives.

Zusammenfassung

Lokale Blutparasiten bei neu zugezogenen Sperlingsvögeln in Feuchtgebieten

Neu eingebürgerte Arten verlieren möglicherweise ihre originalen Blutparasiten, wenn sie ein neues Gebiet besiedeln. Sind die örtlichen Parasiten nicht in der Lage, die neu zugezogenen Wirte zu infizieren, gewinnen diese womöglich einen Fitness-Vorteil gegenüber ihren ortsansässigen Konkurrenten. Andererseits sind die neuen Arten vielleicht aber auch empfänglich für die örtlichen Parasiten und geraten dann in die örtliche Übertragungs-Dynamik. Wir untersuchten diese beiden Alternativen bei Gruppen von Feuchtgebiets-Sperlingsvögeln in Portugal, Südwest-Europa, die mit Haemosporidien (Haemoproteus und Plasmodium) infiziert waren. In vier Schilfgürteln wurden vier neu angesiedelte sowie sechs lokale (ortsansässige und brütende Zugvögel) Sperlingsvogelarten auf Haemosporidien getestet. Unsere Ergebnisse legen nahe, dass die neu zugezogenen Arten nach der Besiedelung ihre ursprünglichen Blutparasiten verloren und in die örtlichen Übertragungs-Zyklen gerieten. Zwei lokale Plasmodium-Verwandtschaftslinien infizierten die neu angesiedelten Arten: eine davon (SGS1) war der größere Wirts-Generalist und in den ortsansässigen Arten am weitesten verbreitet; wir erwarteten, dass er in den neu angesiedelten Arten zufällig verteilt war. Die andere Linie, PADOM01, trat in der Testgruppe seltener auf, war aber in denjenigen ortsansässigen Wirten vorhanden, die den angesiedelten, infizierten Arten phylogenetisch nahe standen. Demnach scheint die Kolonisierung der angesiedelten Wirtsvögel durch PADOM01 durch die Spezialisierung des Parasiten sowie durch phylogenetische Faktoren eingeschränkt zu sein. Ein Test der Phylogenie zeigte zwischen angesiedelten und ortsansässigen Tieren keine signifikanten Unterschiede in der Verbreitung der Infektionen und der Anzahl der Verwandtschaftslinien.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RM, May RM (1978) Regulation and stability of host–parasite population interactions 1. Regulatory processes. J Anim Ecol 47(1):219–247

    Article  Google Scholar 

  • Arnaiz-Villena A, Ruiz-del-Valle V, Gomez-Prieto P, Reguera R, Carlos P-L, Serano-Vela I (2009) Estrildinae Finches (Aves, Passeriformes) from Africa, South Asia and Australia: a Molecular Phylogeographic Study. Open Ornithol J 2:29–36. doi:https://doi.org/10.2174/1874453200902010029

    Article  CAS  Google Scholar 

  • Beadell JS, Ishtiaq F, Covas R, Melo M, Warren BH, Atkinson CT, Bensch S, Graves GR, Jhala YV, Peirce MA, Rahmani AR, Fonseca DM, Fleischer RC (2006) Global phylogeographic limits of Hawaii’s avian malaria. Proc R Soc Lond B 273(1604):2935–2944. doi:https://doi.org/10.1098/rspb.2006.3671

    Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267(1452):1583–1589. doi:https://doi.org/10.1098/rspb.2000.1181

    Article  CAS  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9(5):1353–1358. doi:https://doi.org/10.1111/j.1755-0998.2009.02692.x

    Article  Google Scholar 

  • Bonneaud C, Pérez-Tris J, Federici P, Chastel O, Sorci G (2006) Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 60(2):383–389. doi:https://doi.org/10.1554/05-409.1

    Article  CAS  Google Scholar 

  • Dimitrov D, Zehtindjiev P, Bensch S (2010) Genetic diversity of avian blood parasites in SE Europe: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Bulgaria. Acta Parasitol 55(3):201–209. doi:https://doi.org/10.2478/s11686-010-0029-z

    Article  CAS  Google Scholar 

  • Duncan RP, Blackburn TM, Sol D (2003) The ecology of bird introductions. Annu Rev Ecol Evol Syst 34:71–98. doi:https://doi.org/10.1146/annurev.ecolsys.34.011802.132353

    Article  Google Scholar 

  • Durrant KL, Reed JL, Jones PJ, Dallimer M, Cheke RA, McWilliam AN, Fleischer RC (2007) Variation in haematozoan parasitism at local and landscape levels in the red-billed quelea Quelea quelea. J Avian Biol 38(6):662–671. doi:https://doi.org/10.1111/j.2007.0908-8857.04034.x

    Article  Google Scholar 

  • Garland T, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer-simulation. Syst Biol 42(3):265–292

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hellgren O, Waldenstrom J, Pérez-Tris J, Szollosi E, Hasselquist D, Krizanauskiene A, Ottosson U, Bensch S (2007) Detecting shifts of transmission areas in avian blood parasites—a phylogenetic approach. Mol Ecol 16(6):1281–1290. doi:https://doi.org/10.1111/j.1365-294X.2007.03277.x

    Article  Google Scholar 

  • Hellgren O, Pérez-Tris J, Bensch S (2009) A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 90(10):2840–2849. doi:https://doi.org/10.1890/08-1059.1

    Article  Google Scholar 

  • Iezhova TA, Dodge M, Sehgal RNM, Smith TB, Valkiunas G (2011) New avian Haemoproteus species (Haemosporida: Haemoproteidae) from African birds, with a critique of the use of host taxonomic information in hemoproteid classification. J Parasitol 97(4):682–694. doi:https://doi.org/10.1645/ge-2709.1

    Article  Google Scholar 

  • Ishtiaq F, Gering E, Rappole JH, Rahmani AR, Jhala YV, Dove CJ, Milensky C, Olson SL, Peirce MA, Fleischer RC (2007) Prevalence and diversity of avian hematozoan parasites in Asia: a regional survey. J Wildl Dis 43(3):382–398

    Article  Google Scholar 

  • Johansson US, Fjeldsa J, Bowie RCK (2008) Phylogenetic relationships within Passerida (Aves: Passeriformes): a review and a new molecular phylogeny based on three nuclear intron markers. Mol Phylogenet Evol 48(3):858–876. doi:https://doi.org/10.1016/j.ympev.2008.05.029

    Article  CAS  Google Scholar 

  • Knowles SCL, Palinauskas V, Sheldon BC (2010) Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol 23(3):557–569. doi:https://doi.org/10.1111/j.1420-9101.2009.01920.x

    Article  CAS  Google Scholar 

  • Lima MR, Simpson L, Fecchio A, Kyaw CM (2010) Low prevalence of haemosporidian parasites in the introduced house sparrow (Passer domesticus) in Brazil. Acta Parasitol 55(4):297–303. doi:https://doi.org/10.2478/s11686-010-0055-x

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10(3):689–710

    Article  Google Scholar 

  • MacLeod CJ, Paterson AM, Tompkins DM, Duncan RP (2010) Parasites lost—do invaders miss the boat or drown on arrival? Ecol Lett 13(4):516–527. doi:https://doi.org/10.1111/j.1461-0248.2010.01446.x

    Article  Google Scholar 

  • Marzal A, de Lope F, Navarro C, Moller AP (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142(4):541–545. doi:https://doi.org/10.1007/s00442-004-1757-2

    Article  Google Scholar 

  • Marzal A, Ricklefs RE, Valkiūnas G, Albayrak T, Arriero E, Bonneaud C, Czirják GA, Ewen J, Hellgren O, Hořáková D, Iezhova TA, Jensen H, Križanauskiene A, Lima MR, de Lope F, Magnussen E, Martin LB, Møller AP, Palinauskas V, Pap PL, Pérez-Tris J, Sehgal RNM, Soler M, Szöllosi E, Westerdahl H, Zetindjiev P, Bensch S (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS ONE 6(7):e21905. doi:https://doi.org/10.1371/journal.pone.0021905

    Article  CAS  Google Scholar 

  • Matias R (2002) Aves Exóticas que Nidificam em Portugal Continental, 1st edn. ICN, Lisbon

    Google Scholar 

  • Matias R, Catry P, Costa H, Elias G, Jara J, Moore CC, Tomé R (2007) Systematic list of the birds of Mainland Portugal. An Ornitol 5:74–132

    Google Scholar 

  • Merino S, Seoane J, de la Puente J, Bermejo A (2000) Low prevalence of infection by haemoparasites in Cetti’s warblers Cettia cetti from central Spain. Ardeola 47(2):269–271

    Google Scholar 

  • Norte AC, Araujo PM, Sampaio HL, Sousa JP, Ramos JA (2009) Haematozoa infections in a great tit Parus major population in Central Portugal: relationships with breeding effort and health. Ibis 151(4):677–688

    Article  Google Scholar 

  • Pérez-Tris J, Hellgren O, Krizanauskiene A, Waldenstrom J, Secondi J, Bonneaud C, Fjeldsa J, Hasselquist D, Bensch S (2007) Within-host speciation of malaria parasites. PloS One 2(2). doi:https://doi.org/10.1371/journal.pone.0000235

  • Round PD, Hansson B, Pearson DJ, Kennerley PR, Bensch S (2007) Lost and found: the enigmatic large-billed reed warbler Acrocephalus orinus rediscovered after 139 years. J Avian Biol 38(2):133–138. doi:https://doi.org/10.1111/j.2007.0908-8857.04064.x

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Silva T, Reino LM, Borralho R (2002) A model for range expansion of an introduced species: the common waxbill Estrilda astrild in Portugal. Divers Distrib 8(6):319–326

    Article  Google Scholar 

  • Torchin ME, Lafferty KD, Kuris AM (2001) Release from parasites as natural enemies: Increased performance of a globally introduced marine crab. Biol Invasions 3(4):333–345. doi:https://doi.org/10.1023/a:1015855019360

    Article  Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421(6923):628–630. doi:https://doi.org/10.1038/nature01346

    Article  CAS  Google Scholar 

  • Treplin S, Siegert R, Bleidorn C, Thompson HS, Fotso R, Tiedemann R (2008) Molecular phylogeny of songbirds (Aves: Passeriformes) and the relative utility of common nuclear marker loci. Cladistics 24(3):328–349. doi:https://doi.org/10.1111/j.1096-0031.2007.00178.x

    Article  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia, 1st edn. CRC, Boca Raton

    Google Scholar 

  • Ventim R, Ramos JA, Osório H, Lopes RJ, Pérez-Tris J, Mendes L (2012) Avian malaria infections in western European mosquitoes. Parasitol Res. doi:https://doi.org/10.1007/s00436-012-2880-3

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277(5325):494–499. doi:https://doi.org/10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  • Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11(8):1545–1554. doi:https://doi.org/10.1046/j.1365-294X.2002.01523.x

    Article  Google Scholar 

  • Waldenström J, Bensch S, Hasselquist D, Ostman O (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90(1):191–194. doi:https://doi.org/10.1645/GE-3221RN

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Fundação para a Ciência e Tecnologia (grant no. SFRH/BD/28930/2006 to R.V.) and by the Spanish Ministry of Science and Innovation (CGL2010-15734, to J.P-T.). The Instituto da Conservação da Natureza e Biodiversidade provided logistic support, permits for bird capture and help in the field work (by Vítor Encarnação, Paulo Encarnação, Nuno Grade and Paulo Tenreiro). The Pato Association also provided logistic support in Tornada. The authors would like to thank the help of Joana Morais in the lab and of several volunteers in the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Ventim.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventim, R., Mendes, L., Ramos, J.A. et al. Local haemoparasites in introduced wetland passerines. J Ornithol 153, 1253–1259 (2012). https://doi.org/10.1007/s10336-012-0860-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-012-0860-0

Keywords

Navigation