Skip to main content
Log in

Point count duration: five minutes are usually sufficient to model the distribution of bird species and to study the structure of communities for a French landscape

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The point count method is very widely used for estimating bird abundances. In studies of bird–environment relationships, the duration used for point counts varies considerably from one study to another. Short counting times may increase the number of false absences while long counting times increase the probability that birds initially absent immigrate during the counting period. This study aims to quantify the effect of point count duration on the performance of bird distribution models and on the estimated structure of the communities. We used a sample of 256 point counts collected in south western France and we compared four count durations (5, 10, 15 and 20 min). After comparing the predictive performance of seven statistical methods, we constructed one GAM (generalized additive model) per counting time to link the presence–absence data of each species with seven landscape variables. We evaluated the models by examining explained deviance and by comparing predicted and observed values for an independent data using AUC (area under the curve) and TSS (true skill statistics). At the community level, we constructed one CQO (constrained quadratic ordination) per counting time, then we compared the species’ scores along the latent environmental variables. For the 21 species studied, the overall performance of GAMs only improves very moderately with a lengthening of the counting time (mean D 2 = 25% for 5 min and 28% for 20 min; mean TSS = 0.40 for 5 min and 0.43 for 20 min), with an increase for some species and a decrease for others. The latent environmental variables of the four CQOs were associated with the same explanatory variables and the scores of the species along the latent variables were highly correlated (between 5 and 20 min, P < 2.10−16, rho = 0.99). In the perspective of building reliable bird distribution models, our results thus show that a point count duration of 5 min is sufficient in temperate regions such as France.

Zusammenfassung

Punkt-Stopp Zählungen: Fünf Minuten sind normalerweise ausreichend um die Verteilung von Vogelarten zu modellieren und die Struktur der Artengemeinschaften in einer französischen Landschaft zu untersuchen.

Punkt-Stopp Zählungen werden sehr häufig angewandt um Abundanzen von Vögeln abzuschätzen. Die verwandte Zeitdauer von Punkt-Stopp Zählungen für die Erfassung von Vogel-Umwelt Assoziationen variiert jedoch beträchtlich zwischen verschiedenen Untersuchungen. Kurze Zählzeiträume können die Wahrscheinlichkeit falscher Abwesenheiten von Arten erhöhen, während eine lange Zähldauer die Wahrscheinlichkeit erhöhen, dass Vögel, die zuerst abwesend waren, während der Zähldauer zuwandern. Das Ziel diese Untersuchung ist die Quantifizierung des Effekts der Zähldauer auf die Eigenschaften von Modellen zur Verteilung der Vogelarten sowie auf die ermittelte Struktur der Artengemeinschaften. Wir verglichen fünf Zählzeiträume (5, 10, 15 und 20 Minuten) in einem Datensatz von 256 Punkt-Stopp Zählungen, welche in SW-Frankreich erhoben wurden. Nachdem die Vorhersagefähigkeit von sieben statistischen Methoden verglichen wurde, konstruierten wir ein GAM (Generalized Additive Model) pro Zählzeitdauer, um die Anwesenheit-Abwesenheit einer jeden Art mit sieben Landschaftsvariablen zu assoziieren. Wir evaluierten die Modelle, indem wir die erklärte Abweichungssumme untersuchten und mit Hilfen von AUS (area under the curve) und TSS (true skill statistics) die Erwartungswerte mit den tatsächlichen Werten verglichen, für unabhängige Daten. Wir konstruierten eine CQO (Constrained quadratic ordination) pro Zähldauer auf dem Artengemeinschaftsniveau, und verglichen die Werte pro Art entlang der latenten Umweltvariablen. Die Gesamtgüte der GAMs für die untersuchten 21 Arten verbesserte sich nur moderat mit einer verlängerten Zähldauer (Mittelwert: D2 = 25% für 5 min und 28% für 20 min; Mittelwert TSS = 0.40 für 5 min und 0.43 für 20 min), wobei für einige Arten eine Zunahme, für andere jedoch eine Abnahme stattfand. Die latenten Umweltvariablen der vier CQOs waren mit den gleichen erklärenden Variablen assoziiert, und die Werte der Arten entlang der latenten Variablen korrelierten stark miteinander (zwischen 5 und 20 Minuten, P < 2.10−16, rho = 0.99). Unsere Ergebnisse zeigen dass eine Punkt-Stopp Zähldauer von fünf Minuten in gemäßigten Zonen wie Frankreich ausreichend ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alldredge MW, Pollock KH, Simons TR, Collazo JA, Shriner SA (2007) Time-of-detection method for estimating abundance from point-count surveys. Auk 124:653–664

    Article  Google Scholar 

  • Alldredge MW, Pacifici K, Simons TR, Pollock KH (2008) A novel field evaluation of the effectiveness of distance and independent observer sampling to estimate aural avian detection probabilities. J Appl Ecol 45:1349–1356. doi:10.1111/j.1365-2664.2008.01517.x

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. doi:10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. doi:10.1111/j.1365-2699.2006.01584.x

    Article  Google Scholar 

  • Araujo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513. doi:10.1111/j.1365-2486.2005.001000.x

    Article  Google Scholar 

  • Balent G, Courtiade B (1992) Modelling bird communities/landscape patterns relationships in a rural area of south-western France. Landsc Ecol 6:195–211. doi:10.1007/BF00130031

    Article  Google Scholar 

  • Batary P, Matthiesen T, Tscharntke T (2010) Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biol Conserv 143:2020–2027. doi:10.1016/j.biocon.2010.05.005

    Article  Google Scholar 

  • Bibby C, Burgess N, Hill D, Mustoe S (2000) Bird census techniques. Academic Press, London

  • Blondel J, Ferry C, Frochot B (1970) La méthode des indices ponctuels d’abondance I.P.A. ou des relevés d’avifaune par “points d’écoute”. Alauda 38:55–71

    Google Scholar 

  • Boatman ND, Pietravalle S, Parry HR, Crocker J, Irving PV, Turley DB, Mills J, Dwyer JC (2010) Agricultural land use and Skylark Alauda arvensis: a case study linking a habitat association model to spatially explicit change scenarios. Ibis 152:63–76

    Article  Google Scholar 

  • Bjørnstad ON (2008) NCF: Spatial Nonparametric Covariance Functions R package version 1.1-1. http://cran.r-project.org/web/packages/ncf/

  • Brewster JP, Simons TR (2009) Testing the importance of auditory detections in avian point counts. J Field Ornithol 80:178–182

    Article  Google Scholar 

  • Brotons L, Wolff A, Paulus G, Martin JL (2005) Effect of adjacent agricultural habitat on the distribution of passerines in natural grasslands. Biol Conserv 124:407–414. doi:10.1016/j.biocon.2005.01.046

    Article  Google Scholar 

  • Brotons L, Herrando S, Pla M (2007) Updating bird species distribution at large spatial scales: applications of habitat modelling to data from long-term monitoring programs. Divers Distrib 13:276–288. doi:10.1111/j.1472-4642.2007.00339.x

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to Distance Sampling. Oxford University Press, Oxford

  • Caprio E, Ellena I, Rolando A (2009) Assessing habitat/landscape predictors of bird diversity in managed deciduous forests: a seasonal and guild-based approach. Biodivers Conserv 18:1287–1303

    Article  Google Scholar 

  • Cushman SA, Huettmann F (2010) Spatial complexity, informatics, and wildlife conservation. Springer, New York

  • Dettmers R, Buehler DA, Bartlett JG, Klaus NA (1999) Influence of point count length and repeated visits on habitat model performance. J Wildl Manag 63:815–823

    Article  Google Scholar 

  • Dormann F, MacPherson M, Araujo B, Bivand R, Bolliger J, Carl G, Davies G, Hirzel A, Jetz W, Kissling WD, Kuhn I, Ohlemuller R, Peres-Neto R, Reineking B, Schroder B, Schurr M, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Drapeau P, Leduc A, MacNeil R (1999) Refining the use of point counts at the scale of individual points in studies of bird-habitat relationships. J Avian Biol 30:367–382

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Graham H, Anderson P, Dudik M, Ferrier S, Guisan A, Hijmans J, Huettmann F, Leathwick R, Lehmann A, Li J, Lohmann G, Loiselle A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton CM, Townsend PA, Phillips J, Richardson K, Scachetti-Pereira R, Schapire E, Soberon J, Williams S, Wisz S, Zimmermann E (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Ferrier S, Guisan A (2006) Spatial modelling of biodiversity at the community level. J Appl Ecol 43:393–404

    Article  Google Scholar 

  • Fonderflick J, Caplat P, Lovaty F, Thevenot M, Prodon R (2010) Avifauna trends following changes in a Mediterranean upland pastoral system. Agric Ecosyst Environ 137:337–347. doi:10.1016/j.agee.2010.03.004

    Article  Google Scholar 

  • Fuller RJ, Langslow DR (1984) Estimating numbers of birds by point counts—how long should counts last. Bird Study 31:195–202

    Article  Google Scholar 

  • Gauch HG (1982) Noise reduction by eigenvector ordinations. Ecology 63:1643–1649

    Article  Google Scholar 

  • Gonzalo-Turpin H, Sirami C, Brotons L, Gonzalo L, Martin JL (2008) Teasing out biological effects and sampling artifacts when using occupancy rate in monitoring programs. J Field Ornithol 79:159–169

    Article  Google Scholar 

  • Gu WD, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biol Conserv 116:195–203. doi:10.1016/S0006-3207(03)00190-3

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araujo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Hu J, Hu H, Jiang Z (2010) The impacts of climate change on the wintering distribution of an endangered migratory bird. Oecologia 164. doi:10.1007/s00442-010-1732-z

  • Hutto RL, Pletschet SM, Hendricks P (1986) A fixed-radius point count method for nonbreeding and breeding season use. Auk 103:593–602

    Google Scholar 

  • Jacquet K, Prodon R (2009) Measuring the postfire resilience of a bird-vegetation system: a 28-year study in a Mediterranean oak woodland. Oecologia 161:801–811

    Article  PubMed  Google Scholar 

  • Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D (2007) Climate envelope, life history traits and the resilience of birds facing global change. Glob Change Biol 13:1672–1684. doi:10.1111/j.1365-2486.2007.01386.x

    Article  Google Scholar 

  • Jimenez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Johnson DH (2008) In defense of indices: the case of bird surveys. J Wildl Manag 72:857–868

    Google Scholar 

  • Lee DC, Marsden SJ (2008) Adjusting count period strategies to improve the accuracy of forest bird abundance estimates from point transect distance sampling surveys. Ibis 150:315–325. doi:10.1111/j.1474-919X.2007.00790.x

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Lloyd JD, Doyle T (2011) Abundance and population trends of mangrove landbirds in southwest Florida Abundancia o tendencias poblacionales de aves terrestres de manglares en el suroeste de Florida. J Field Ornithol 82:132–139. doi:10.1111/j.1557-9263.2011.00315.x

    Article  Google Scholar 

  • Lobo JM, Jimenez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • Monteil C, Deconchat M, Balent G (2005) Simple neural network reveals unexpected patterns of bird species richness in forest fragments. Landsc Ecol 20:513–527. doi:10.1007/s10980-004-3317-x

    Article  Google Scholar 

  • Nichols JD, Hines JE, Sauer JR, Fallon FW, Fallon JE, Heglund PJ (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117:393–408

    Article  Google Scholar 

  • Pabian SE, Brittingham MC (2007) Terrestrial liming benefits birds in an acidified forest in the northeast. Ecol Appl 17:2184–2194

    Article  PubMed  Google Scholar 

  • Pearson RG, Thuiller W, Araujo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Ralph CJ, Sauer JR, Droege S (1995) Monitoring bird populations by point count. U.S. department of agriculture, forest service, general technical report PSW-149

  • Rosenstock SS, Anderson DR, Giesen KM, Leukering T, Carter MF (2002) Landbird counting techniques: current practices and an alternative. Auk 119:46–53. doi:10.1642/0004-8038(2002)119[0046:LCTCPA]2.0.CO;2

    Article  Google Scholar 

  • Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568

    Article  Google Scholar 

  • Seoane J, Carrascal LM, Alonso CL, Palomino D (2005) Species-specific traits associated to prediction errors in bird habitat suitability modelling. Ecol Model 185:299–308. doi:10.1016/j.ecolmodel.2004.12.012

    Article  Google Scholar 

  • Simons TR, Pollock KH, Wettroth JM, Alldredge MW, Pacifici K, Brewster J (2009) Sources of measurement error, misclassification error, and bias in auditory avian point count data. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Environmental and ecological statistics 3. Springer, New York, pp 237–254

    Chapter  Google Scholar 

  • Sirami C, Brotons L, Martin JL (2007) Vegetation and songbird response to land abandonment: from landscape to census plot. Divers Distrib 13:42–52. doi:10.1111/j.1472-4642.2006.00297.x

    Google Scholar 

  • Siriwardena GM, Stevens DK, Anderson GQA, Vickery JA, Calbrade NA, Dodd S (2007) The effect of supplementary winter seed food on breeding populations of farmland birds: evidence from two large-scale experiments. J Appl Ecol 44:920–932

    Article  Google Scholar 

  • Smucker KM, Hutto RL, Steele BM (2005) Changes in bird abundance after wildfire: importance of fire severity and time since fire. Ecol Appl 15:1535–1549

    Article  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13. doi:10.1016/S0304-3800(01)00388-X

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Thompson FR, La Sorte FA (2008) Comparison of methods for estimating bird abundance and trends from historical count data. J Wildl Manag 72:1674–1682. doi:10.2193/2008-135

    Article  Google Scholar 

  • Thompson FR, Burhans DE, Root B (2002) Effects of point count protocol on bird abundance and variability estimates and power to detect population trends. J Field Ornithol 73:141–150. doi:10.1648/0273-8570(2002)073[0141:EOPCPO]2.0.CO;2

    Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araujo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Tozer DC, Burke DM, Nol E, Elliott KA (2010) Short-term effects of group-selection harvesting on breeding birds in a northern hardwood forest. For Ecol Manag 259:1522–1529

    Article  Google Scholar 

  • Turner IM (1996) Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol 33:200–209

    Article  Google Scholar 

  • Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol Appl 13:1790–1801

    Article  Google Scholar 

  • Vallecillo S, Brotons L, Herrando S (2008) Assessing the response of open-habitat bird species to landscape changes in Mediterranean mosaics. Biodivers Conserv 17:103–119

    Article  Google Scholar 

  • Virkkala R, Luoto M, Heikkinen RK, Leikola N (2005) Distribution patterns of boreal marshland birds: modelling the relationships to land cover and climate. J Biogeogr 32:1957–1970

    Article  Google Scholar 

  • Wretenberg J, Lindström A, Svensson S, Thierfelder T, Pärt T (2006) Population trends of farmland birds in Sweden and England: similar trends but different patterns of agricultural intensification. J Appl Ecol 43:1110–1120. doi:10.1111/j.1365-2664.2006.01216.x

    Article  Google Scholar 

  • Wu JG, Shen WJ, Sun WH, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landsc Ecol 17:761–782

    Article  Google Scholar 

  • Yee TW (2004) A new technique for maximum-likelihood canonical Gaussian ordination. Ecol Monogr 74:685–701

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank Falk Huettmann for his precious advice when writing this paper, Bernard Courtiade for his participation in the 1982 field campaign, and Laurent Raison, Marc Deconchat and Philippe Caniot for their participation in the 2007 field campaign. We would also like to thank Sylvie Ladet for the cartographic documents required for field work and Valéry Rasplus for developing an IT tool for entering the point-counts data in 5-min bands. Lastly, we would like to thank Huw ap Thomas (Axtrad) for translating the manuscript into English. Both 1982 and 2007 field work were funded by INRA. This research was supported through a National Research Agency grant BIODIVAGRIM (ANR-07-BDIV-002) “Conserving biodiversity in agro-ecosystems: a spatially explicit landscape modelling approach”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Bonthoux.

Additional information

Communicated by T. Gottschalk.

Appendices

Appendix 1

Comparison of the predictive performance of seven types of model using the BIOMOD package (Thuiller et al. 2009). These models are: Generalized Linear Model (GLM), Generalized Additive Model (GAM), Classification Tree Analysis (CTA), Artificial Neural Networks (ANN), Boosted Regression Trees (BRT), Breiman and Cluter’s random forest (RF), Mixture Discriminant Analysis (MDA) and Multivariate Adaptive Regression (MARS). The mean values of AUC and TSS were calculated among the models for 21 bird species and the four listening durations.

 

 

AUC

TSS

ANN

0.71 (0.07)

0.33 (0.19)

GAM

0.75 (0.08)

0.41 (0.16)

BRT

0.75 (0.07)

0.40 (0.16)

GLM

0.75 (0.07)

0.40 (0.16)

MARS

0.74 (0.08)

0.38 (0.17)

FDA

0.75 (0.08)

0.36 (0.19)

RF

0.73 (0.09)

0.32 (0.18)

Appendix 2

Spline correlogrammes, with 95% pointwise bootstrap confidence intervals of the Pearson residuals from binomial GAMs, including all the significant explanatory variables, fitted to the data. We found evidence of no significant spatial auto-correlation between the models’ residuals based on non-parametric spline correlograms, indicating that non-spatial statistical models were appropriate.

Appendix 3

Link between the latent variable of the CQOs and the 7 environmental variables for 5 and 20 min of counting (n = 256). The black line is a Nadaraya–Watson kernel regression estimate with a bandwidth of 1.5. For 5 and 20 min, this latent variable represents an opening gradient going from wooded sites to open farmland sites.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonthoux, S., Balent, G. Point count duration: five minutes are usually sufficient to model the distribution of bird species and to study the structure of communities for a French landscape. J Ornithol 153, 491–504 (2012). https://doi.org/10.1007/s10336-011-0766-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0766-2

Keywords

Navigation