Skip to main content
Log in

Novel and cross-species microsatellite markers for parentage analysis in Sanderling Calidris alba

  • Technical Notes
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We isolated and tested six novel microsatellite loci in Sanderling (Calidris alba) from Greenland for paternity analyses. In addition, we tested 11 already published microsatellite markers which were originally developed for the congeneric species, the Pectoral Sandpiper (C. melanotos). All loci were polymorphic, but five of the cross-species loci were not scorable due to suboptimal amplification patterns. The 12 successful loci were tested on 87 individuals, yielding an average of 9.0 (range 4–19) alleles per locus and mean expected heterozygosity of 0.70. Because this dataset contained families, tests for Hardy–Weinberg equilibrium, linkage disequilibrium and probability of identity were done on a subset of the data containing 25 adults caught in the same year. The overall probability of identity was 1.0 × 10−13. Only one locus displayed significant homozygote excess and all loci were unlinked. On the basis of female heterozygotes, all loci are assumed to be autosomal.

Zusammenfassung

Wir isolierten und testeten sechs neue Mikrosatelliten-Loci auf Eignung für Verwandtschaftsanalysen beim grönländischen Sanderling (Calidris alba). Zusätzlich dazu testeten wir 11 bereits publizierte Mikrosatellitenmarker, die ursprünglich für den nahe verwandten Graubruststrandläufer (C. melanotos) entwickelt worden waren. Alle Genorte waren polymorph, aber fünf der artübergreifenden loci konnten wegen ungenügender Vervielfältigungsmuster nicht ausgewertet werden. Die 12 verbliebenen Genorte wurden für 87 Individuen getestet und ergaben einen Durchschnitt von 9,0 Allelen pro Genort (Bereich: 4 -19) sowie eine mittlere zu erwartende Heterozygosität von 0,70. Weil dieses Set Daten von Familien enthielt, wurden für einen Teil des Sets mit Daten von fünf adulten, im gleichen Jahr gefangenen Vögeln auch statistische Tests für das Hardy–Weinberg-Äquilibrium, das Kopplungs-Ungleichgewicht, und die Identitäts-Wahrscheinlichkeit durchgeführt. Insgesamt betrug die Identitäts-Wahrscheinlichkeit 1,0*10-13. Nur ein einziger locus zeigte einen signifikanten Homozygoten-Überschuß, und alle loci waren ungekoppelt. Aufgrund der weiblichen Heterozygoten wurde angenommen, dass alle loci autosomal waren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Breiehagen T (1989) Nesting biology and mating system in an alpine population of Temminck’s stint Calidris temminckii. Ibis 131:389–402

    Article  Google Scholar 

  • Carter KL, Kempenaers B (2007) Eleven polymorphic microsatellite markers for paternity analysis in the pectoral sandpiper, Calidris melanotos. Mol Ecol Notes 7:658–660

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Article  Google Scholar 

  • Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–504

    Article  CAS  Google Scholar 

  • Hildén O (1975) Breeding system of Temminck’s stint Calidris temminckii. Ornis Fenn 52:117–146

    Google Scholar 

  • Hildén O (1988) Zur Brutbiologie des Zwergstrandlaufers, Calidris minuta, in Finnmark. Vogelk Tagebuch Schleswig-Holstein 16:245–265

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefing Bioinform 5:150–163

    Article  CAS  Google Scholar 

  • Parmelee DF (1970) Breeding behavior of the sanderling in the Canadian High Arctic. Living Bird 9:97–146

    Google Scholar 

  • Parmelee DF, Payne RB (1973) On multiple broods and the breeding strategy of arctic sanderlings. Ibis 115:218–226

    Article  Google Scholar 

  • Pienkowski MW, Green GH (1976) Breeding biology of sanderlings in north-east Greenland. Br Birds 60:165–177

    Google Scholar 

  • Reneerkens J, Grond K (2009) Return rates, mate fidelity and territory size of sanderlings Calidris alba in Zackenberg. In: Jensen LM, Rasch M (eds) 2009: Zackenberg Ecological Research Operations, 14th Annual Report, 2008. National Environmental Research Institute, Aarhus University, Denmark. 116 pp. Available online: http://www2.dmu.dk/pub/ZERO_09.pdf

  • Reneerkens J, Benhoussa A, Boland H, Collier M, Grond K, Günther K, Hallgrimsson GT, Hansen J, Meissner W, de Meulenaer B, Ntiamoa-Baidu Y, Piersma T, Poot M, van Roomen M, Summers RW, Tomkovich PS, Underhill LG (2009) Sanderlings using African–Eurasian flyways: a review of current knowledge. Wader Study Group Bull 116:2–20

    Google Scholar 

  • Reneerkens J, Grond K, Schekkerman H, Tulp I, Piersma T (2011) Do uniparental Sanderlings Calidris alba increase egg heat input to compensate for low nest attentiveness? PLoS One 6:e16834

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Tomkovich PS, Soloviev MY (2001) Social organisation of sanderlings breeding at northern Taimyr, Siberia. Ornithologia 29:125–136

    Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Netherlands Arctic Programme, administered by the Netherlands Organisation for Scientific Research (NWO) supported our work financially in Greenland. We are grateful to the Danish Polar Center for providing logistics at the research station at Zackenberg and to Petra de Goeij, Joop Jukema and Welmoed Ekster for assisting in the field work in Zackenberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieternella C. Luttikhuizen.

Additional information

Communicated by M. Wink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luttikhuizen, P.C., Bol, A., Witte, H. et al. Novel and cross-species microsatellite markers for parentage analysis in Sanderling Calidris alba . J Ornithol 152, 807–810 (2011). https://doi.org/10.1007/s10336-011-0681-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0681-6

Keywords

Navigation