Skip to main content
Log in

In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup.

Materials and methods

A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared.

Results

Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m3 while through-plane velocities were similar between all valves.

Conclusion

Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rahimtoola SH (2010) Choice of prosthetic heart valve in adults an update. J Am Coll Cardiol 55(22):2413–2426

    Article  PubMed  Google Scholar 

  2. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S, Investigators PT (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607

    Article  CAS  PubMed  Google Scholar 

  3. Tamburino C, Capodanno D, Ramondo A, Petronio AS, Ettori F, Santoro G, Klugmann S, Bedogni F, Maisano F, Marzocchi A, Poli A, Antoniucci D, Napodano M, De Carlo M, Fiorina C, Ussia GP (2011) Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation 123(3):299–308

    Article  PubMed  Google Scholar 

  4. Holmes DR Jr, Mack MJ, Kaul S, Agnihotri A, Alexander KP, Bailey SR, Calhoon JH, Carabello BA, Desai MY, Edwards FH, Francis GS, Gardner TJ, Kappetein AP, Linderbaum JA, Mukherjee C, Mukherjee D, Otto CM, Ruiz CE, Sacco RL, Smith D, Thomas JD, American College of Cardiology F, American Association for Thoracic S, Society for Cardiovascular A, Interventions, Society for Thoracic S, American Heart A, American Society of E, European Association for Cardio-Thoracic S, Heart Failure Society of A, Mended H, Society of Cardiovascular A, Society of Cardiovascular Computed T, Society for Cardiovascular Magnetic R (2012) 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement: developed in collaboration with the American Heart Association, American Society of Echocardiography, European Association for Cardio-Thoracic Surgery, Heart Failure Society of America, Mended Hearts, Society of Cardiovascular Anesthesiologists, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. Ann Thorac Surg 93(4):1340–1395

    Article  PubMed  Google Scholar 

  5. Kodali SK, Williams MR, Smith CR, Svensson LG, Webb JG, Makkar RR, Fontana GP, Dewey TM, Thourani VH, Pichard AD, Fischbein M, Szeto WY, Lim S, Greason KL, Teirstein PS, Malaisrie SC, Douglas PS, Hahn RT, Whisenant B, Zajarias A, Wang D, Akin JJ, Anderson WN, Leon MB, Investigators PT (2012) Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 366(18):1686–1695

    Article  CAS  PubMed  Google Scholar 

  6. Cribier A, Eltchaninoff H, Tron C, Bauer F, Agatiello C, Sebagh L, Bash A, Nusimovici D, Litzler PY, Bessou JP, Leon MB (2004) Early experience with percutaneous transcatheter implantation of heart valve prosthesis for the treatment of end-stage inoperable patients with calcific aortic stenosis. J Am Coll Cardiol 43(4):698–703

    Article  PubMed  Google Scholar 

  7. Grube E, Schuler G, Buellesfeld L, Gerckens U, Linke A, Wenaweser P, Sauren B, Mohr FW, Walther T, Zickmann B, Iversen S, Felderhoff T, Cartier R, Bonan R (2007) Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J Am Coll Cardiol 50(1):69–76

    Article  PubMed  Google Scholar 

  8. Ussia GP, Barbanti M, Cammalleri V, Scarabelli M, Mule M, Aruta P, Pistritto AM, Imme S, Capodanno D, Sarkar K, Gulino S, Tamburino C (2011) Quality-of-life in elderly patients one year after transcatheter aortic valve implantation for severe aortic stenosis. EuroIntervention 7(5):573–579

    Article  PubMed  Google Scholar 

  9. Kumar R, Latib A, Colombo A, Ruiz CE (2014) Self-expanding prostheses for transcatheter aortic valve replacement. Prog Cardiovasc Dis 56(6):596–609

    Article  PubMed  Google Scholar 

  10. Sherif MA, Abdel-Wahab M, Awad O, Geist V, El-Shahed G, Semmler R, Tawfik M, Khattab AA, Richardt D, Richardt G, Tolg R (2010) Early hemodynamic and neurohormonal response after transcatheter aortic valve implantation. Am Heart J 160(5):862–869

    Article  PubMed  Google Scholar 

  11. Gotzmann M, Lindstaedt M, Bojara W, Mugge A, Germing A (2010) Hemodynamic results and changes in myocardial function after transcatheter aortic valve implantation. Am Heart J 159(5):926–932

    Article  PubMed  Google Scholar 

  12. Akins CW, Travis B, Yoganathan AP (2008) Energy loss for evaluating heart valve performance. J Thorac Cardiovasc Surg 136(4):820–833

    Article  PubMed  Google Scholar 

  13. Dyverfeldt P, Hope MD, Tseng EE, Saloner D (2013) Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis. JACC Cardiovasc Imaging 6(1):64–71

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stein PD, Sabbah HN (1974) Measured turbulence and its effect on thrombus formation. Circ Res 35(4):608–614

    Article  CAS  PubMed  Google Scholar 

  15. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042

    Article  CAS  PubMed  Google Scholar 

  16. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, Francios CJ, Frydrychowicz A, Geiger J, Giese D, Hope MD, Kilner PJ, Kozerke S, Myerson S, Neubauer S, Wieben O, Markl M (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17(1):72

    Article  PubMed  PubMed Central  Google Scholar 

  17. von Knobelsdorff-Brenkenhoff F, Dieringer MA, Greiser A, Schulz-Menger J (2011) In vitro assessment of heart valve bioprostheses by cardiovascular magnetic resonance: four-dimensional mapping of flow patterns and orifice area planimetry. Eur J Cardiothorac Surg 40(3):736–742

    Google Scholar 

  18. Markl M, Mikati I, Carr J, McCarthy P, Malaisrie SC (2012) Three-dimensional blood flow alterations after transcatheter aortic valve implantation. Circulation 125(15):e573–e575

    Article  PubMed  Google Scholar 

  19. Trauzeddel RF, Lobe U, Barker AJ, Gelsinger C, Butter C, Markl M, Schulz-Menger J, von Knobelsdorff-Brenkenhoff F (2016) Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement. Int J Cardiovasc Imaging 32(3):461–467

    Article  PubMed  Google Scholar 

  20. Dyverfeldt P, Sigfridsson A, Kvitting JP, Ebbers T (2006) Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magn Reson Med 56(4):850–858

    Article  PubMed  Google Scholar 

  21. Dyverfeldt P, Kvitting JP, Sigfridsson A, Engvall J, Bolger AF, Ebbers T (2008) Assessment of fluctuating velocities in disturbed cardiovascular blood flow: in vivo feasibility of generalized phase-contrast MRI. J Magn Reson Imaging 28(3):655–663

    Article  PubMed  Google Scholar 

  22. Binter C, Knobloch V, Manka R, Sigfridsson A, Kozerke S (2013) Bayesian multipoint velocity encoding for concurrent flow and turbulence mapping. Magn Reson Med 69(5):1337–1345

    Article  PubMed  Google Scholar 

  23. Kvitting JP, Dyverfeldt P, Sigfridsson A, Franzen S, Wigstrom L, Bolger AF, Ebbers T (2010) In vitro assessment of flow patterns and turbulence intensity in prosthetic heart valves using generalized phase-contrast MRI. J Magn Reson Imaging 31(5):1075–1080

    Article  PubMed  Google Scholar 

  24. Giese D, Wong J, Greil GF, Buehrer M, Schaeffter T, Kozerke S (2014) Towards highly accelerated Cartesian time-resolved 3D flow cardiovascular magnetic resonance in the clinical setting. J Cardiovasc Magn Reson 16:42

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eichinger W, Dabritz S, Lange R (2007) Update of the European standards for inactive surgical implants in the area of heart valve prostheses. Eur J Cardiothorac Surg 32(5):690–695

    Article  PubMed  Google Scholar 

  26. Woolam GL, Schnur PL, Vallbona C, Hoff HE (1962) The pulse wave velocity as an early indicator of atherosclerosis in diabetic subjects. Circulation 25:533–539

    Article  CAS  PubMed  Google Scholar 

  27. Liu XN, Gao HQ, Li BY, Cheng M, Ma YB, Zhang ZM, Gao XM, Liu YP, Wang M (2007) Pulse wave velocity as a marker of arteriosclerosis and its comorbidities in Chinese patients. Hypertens Res 30(3):237–242

    Article  CAS  PubMed  Google Scholar 

  28. Xing D, Gibbs SJ, Derbyshire JA, Fordham EJ, Carpenter TA, Hall LD (1995) Bayesian-analysis for quantitative NMR flow and diffusion imaging. J Magn Reson Ser B 106(1):1–9

    Article  CAS  Google Scholar 

  29. Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP (1993) Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3(3):521–530

    Article  CAS  PubMed  Google Scholar 

  30. Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39(2):300–308

    Article  CAS  PubMed  Google Scholar 

  31. Hope MD, Hope TA, Crook SE, Ordovas KG, Urbania TH, Alley MT, Higgins CB (2011) 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging 4(7):781–787

    Article  PubMed  Google Scholar 

  32. Binter C, Gulan U, Holzner M, Kozerke S (2016) On the accuracy of viscous and turbulent loss quantification in stenotic aortic flow using phase-contrast MRI. Magn Reson Med 76(1):191–196

    Article  PubMed  Google Scholar 

  33. Clavel MA, Rodes-Cabau J, Dumont E, Bagur R, Bergeron S, De Larochelliere R, Doyle D, Larose E, Dumesnil JG, Pibarot P (2011) Validation and characterization of transcatheter aortic valve effective orifice area measured by Doppler echocardiography. JACC Cardiovasc Imaging 4(10):1053–1062

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Herbert Metzner from the Department of Physical Chemistry of the University of Cologne for performing elasticity measurements. This work was supported by the Koeln Fortune Program/Faculty of Medicine, University of Cologne.

Author information

Authors and Affiliations

Authors

Contributions

DG designed the study, developed the acquisition and reconstruction algorithms, collected and analysed the data and drafted and revised the manuscript. KW contributed to the study design, the data acquisition, reconstruction, analysis and manuscript draft. BB contributed to the study design and revised the manuscript. NM and H-CC procured the TAVIs and contributed to the in vitro setup, the manuscript preparation and revision. DM and AB contributed to the study design, the manuscript preparation, supervised the work and revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Daniel Giese.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Research involving human participants

No research involved human participants.

Informed consent

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10334_2017_651_MOESM1_ESM.avi

Vid. 1 Time-resolved overlay of velocities in a 2-D coronal plane along with a 3-D rendering of TKE values of all TAVI valves 1 (AVI 2445 kb)

Fig. 1s Image in systole of particles ejected at the level C3 of all TAVI valves (TIFF 1370 kb)

Vid. 2 Time-resolved traces of particle ejected at level C3 of all TAVI valves (AVI 3732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giese, D., Weiss, K., Baeßler, B. et al. In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses. Magn Reson Mater Phy 31, 165–172 (2018). https://doi.org/10.1007/s10334-017-0651-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0651-y

Keywords

Navigation