Skip to main content

Advertisement

Log in

An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

In most half-Fourier imaging methods, explicit phase replacement is used. In combination with parallel imaging, or compressed sensing, half-Fourier reconstruction is usually performed in a separate step. The purpose of this paper is to report that integration of half-Fourier reconstruction into iterative reconstruction minimizes reconstruction errors.

Materials and methods

The L1-norm phase constraint for half-Fourier imaging proposed in this work is compared with the L2-norm variant of the same algorithm, with several typical half-Fourier reconstruction methods. Half-Fourier imaging with the proposed phase constraint can be seamlessly combined with parallel imaging and compressed sensing to achieve high acceleration factors.

Results

In simulations and in in-vivo experiments half-Fourier imaging with the proposed L1-norm phase constraint enables superior performance both reconstruction of image details and with regard to robustness against phase estimation errors.

Conclusion

The performance and feasibility of half-Fourier imaging with the proposed L1-norm phase constraint is reported. Its seamless combination with parallel imaging and compressed sensing enables use of greater acceleration in 3D MR imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. \(\angle x - P = 0\) denotes a group of linear equations because it can be rewritten as \(x_{\text{i}} - x_{\text{r}} \cdot \tan \left( P \right) = 0\), where \(x_{\text{i}}\) repsents the imaginary part of x, and \(x_{\text{r}}\) represents the real part of x.

References

  1. Noll DC, Nishimura DG, Macovski A (1991) Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging 10(2):154–163

    Article  CAS  PubMed  Google Scholar 

  2. Haacke EM, Lindskog ED, Lin W (1991) A fast, iterative, partial-Fourier technique capable of local phase recovery. J Magn Reson 92:126–145

    CAS  Google Scholar 

  3. Huang F, Lin W, Li Y (2009) Partial fourier reconstruction through data fitting and convolution in k-space. Magn Reson Med 62:1261–1269

    Article  PubMed  Google Scholar 

  4. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  5. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  6. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  7. Lustig M, Pauly JM (2010) SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 64:457–471

    PubMed Central  PubMed  Google Scholar 

  8. Sabati M, Peng H, Frayne R (2008) Phase-constrained reconstruction of GRAPPA for accelerated MR acquisitions. In: Proceedings of the 16th scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 1275

  9. King KF, Angelos L (2000) SENSE with partial fourier homodyne reconstruction. In: Proceedings of the 8th scientific meeting, International Society for Magnetic Resonance in Medicine, Denver, p 153

  10. Clayton DB, Bammer R (2005) Methods for SENSE reconstruction with partial K-space acquisition. In: Proceedings of the 13rd scientific meeting, International Society for Magnetic Resonance in Medicine, Miami Beach, p 686

  11. Bydder M, Robson MD (2004) Partial Fourier partially parallel imaging. In: Proceedings of the 12nd scientific meeting, International Society for Magnetic Resonance in Medicine, Kyoto, p 532

  12. Samsonov A, Bydder M (2005) Adaptive phase-constrained reconstruction for partial fourier partially parallel imaging. In: Proceedings of the 13rd scientific meeting, International Society for Magnetic Resonance in Medicine, Miami Beach, p 2454

  13. Bydder M, Robson MD (2005) Partial Fourier partially parallel imaging. Magn Reson Med 53:1393–1401

    Article  PubMed  Google Scholar 

  14. Blaimer M, Gutberlet M, Kellman P, Breuer FA, Köstler H, Griswold MA (2009) Virtual coil concept for improved parallel MRI employing conjugate symmetric signals. Magn Reson Med 61:93–102

    Article  PubMed  Google Scholar 

  15. Blaimer M, Jakob PM, Breuer FA (2014) Regularization method for phase-constrained parallel MRI. Magn Reson Med 72:166–171

    Article  PubMed  Google Scholar 

  16. Foucart S, Rauhut H (2013) A mathematical introduction to compressive sensing. Applied and numerical harmonic analysis. Springer, New York

    Google Scholar 

  17. Çukur T, Lustig M, Nishimura DG (2009) Improving non-contrast-enhanced steady-state free precession angiography with compressed sensing. Magn Reson Med 61:1122–1131

    Article  PubMed Central  PubMed  Google Scholar 

  18. Trzasko JD, Haider CR, Borisch EA, Campeau NG, Glockner JF, Riederer SJ, Manduca A (2011) Sparse-CAPR: highly accelerated 4D CE-MRA with parallel imaging and nonconvex compressive sensing. Magn Reson Med 66:1019–1032

    Article  PubMed Central  PubMed  Google Scholar 

  19. Jung H, Sung K, Nayak KS, Kim EY, Ye JC (2009) k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61:103–116

    Article  PubMed  Google Scholar 

  20. Kim D, Dyvorne HA, Otazo R, Feng L, Sodickson DK, Lee VS (2012) Accelerated phase-contrast cine MRI using k-t SPARSE-SENSE. Magn Reson Med 67:1054–1064

    Article  PubMed Central  PubMed  Google Scholar 

  21. Liang D, Liu B, Wang J, Ying L (2009) Accelerating SENSE using compressed sensing. Magn Reson Med 62:1574–1584

    Article  PubMed  Google Scholar 

  22. Lustig M, Alley M, Vasanawala S, Donoho DL, Pauly JM (2009) L1 SPIR-iT: autocalibrating parallel imaging compressed sensing. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Hawaii, p 379

  23. Mark Murphy, Alley M, Demmel J, Keutzer K, Vasanawala S, Lustig M (2012) Fast-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans Med Imaging 31(6):1250–1262

    Article  Google Scholar 

  24. Bilgin A, Kim Y, Abraham V, Trouard TP, Altbach MI (2009) Compressed sensing with phase constrained partial radial k-space. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Hawaii, p 2823

  25. Liu F, Duan Y, Peterson BS, Kangarlu A (2012) Compressed sensing MRI combined with SENSE in partial k-space. Phys Med Biol 57(21):391–403

    Article  Google Scholar 

  26. Doneva M, Börnert P, Eggers H, Mertins A (2010) Partial Fourier compressed sensing. In: Proceedings of the 18th scientific meeting, International Society for Magnetic Resonance in Medicine, Stockholm, p 485

  27. Doneva M, Börnert P, Eggers H, Mertins A, Pauly J, Lustig M (2010) Compressed sensing for chemical shift-based water–fat separation. Magn Reson Med 64:1749–1759

    Article  CAS  PubMed  Google Scholar 

  28. Feng Z, Noll DC, Nielsen JF, Fessler JA (2012) Separate magnitude and phase regularization via compressed sensing. IEEE Trans Med Imaging 31(9):1713–1723

    Article  Google Scholar 

  29. Schmidt M (2005) Least squares optimization with L1-norm regularization. Project Report. University of British Columbia, British Columbia

    Google Scholar 

  30. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195

    Article  PubMed  Google Scholar 

  31. Robert Bridson (2007) Fast Poisson disk sampling in arbitrary dimensions. In: ACM SIGGRAPH sketches, New York, Article 22

  32. Mugler JP, Bao S, Mulkern RV, Guttmann CRG, Robertson RL, Jolesz FA, Brookeman JR (2000) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216:891–899

    Article  PubMed  Google Scholar 

  33. Busse RF, Brau AC, Beatty PJ, Bayram E, Michelich CR, Kijowski R, Rowley HA (2008) Flexible and efficient view ordering for 3D sequences with periodic signal modulation. In: Proceedings of the 16th scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 837

  34. Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM (2004) Field-of-view limitations in parallel imaging. Magn Reson Med 52:1118–1126

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the journal referees for their helpful comments. This work was partly supported by Siemens Healthcare, Erlangen, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All volunteer studies in this work were approved by the ethics committee in the university medical center and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobin Li.

Appendices

Appendix 1

Proof of the Convexity of L1PC: set \(z = \alpha x + \beta y, \;0 \le \alpha \le 1.0, \;0 \le \beta \le 1.0, \;\alpha + \beta = 1.0\), W is an arbitrary constant matrix.

$$\begin{aligned} f_{1} \left( z \right) & = \left\| { \left( {z - \left| z \right|} \right) \circ W} \right\|_{1} \\ & = \mathop \sum \limits_{i} \left| {\left( {z_{i} - \left| {z_{i} } \right|} \right)} \right| \cdot W_{i} \\ \end{aligned}$$

Note that the real part of \(z_{i} - \left| {z_{i} } \right|\) is a negative value, so

$$\begin{aligned} f_{1} \left( z \right) & \le \mathop \sum \limits_{i} \left| {\left( {z_{i} - \left( {\alpha \left| {x_{i} } \right| + \beta \left| {y_{i} } \right|} \right)} \right) \cdot W_{i} } \right| \\ & = \mathop \sum \limits_{i} \left| {\left( {\alpha \left( {x_{i} - \left| {x_{i} } \right|} \right) + \beta \left( {y_{i} - \left| {y_{i} } \right|} \right)} \right)} \right| \cdot W_{i} \\ & \le \alpha \mathop \sum \limits_{i} \left| {x_{i} - \left| {x_{i} } \right|} \right|W_{i} + \beta \mathop \sum \limits_{i} \left| {y_{i} - \left| {y_{i} } \right|} \right|W_{i} \\ & = \alpha f_{1} \left( x \right) + \beta f_{2} \left( y \right) \\ \end{aligned}$$

Therefore, \(\left\| {\left( {x - \left| x \right|} \right) \circ W} \right\|_{1}\) is convex.

Proof of the Convexity of L2PC: set \(z = \alpha x + \beta y,\; 0 \le \alpha \le 1.0, \;0 \le \beta \le 1.0, \;\alpha + \beta = 1.0\), W is an arbitrary constant matrix.

$$\begin{aligned} f_{2} \left( z \right) & = \parallel\!\left( {z - \left| z \right|} \right) \circ W\!\parallel_{2} \\ & = \sqrt {\mathop \sum \limits_{i} \left( {\left| {\alpha x_{i} + \beta y_{i} - \left| {\alpha x_{i} + \beta y_{i} } \right|} \right| \cdot W_{i} } \right)^{2} } \\ & \le \sqrt {\mathop \sum \limits_{i} \left( {\left| {\alpha \left( {x_{i} - \left| {x_{i} } \right|} \right) + \beta \left( {y_{i} - \left| {y_{i} } \right|} \right)} \right| \cdot W_{i} } \right)^{2} } \\ & \le \sqrt {\mathop \sum \limits_{i} \left( {\left( {\alpha \left| {x_{i} - \left| {x_{i} } \right|} \right| + \beta \left| {y_{i} - \left| {y_{i} } \right|} \right|} \right) \cdot W_{i} } \right)^{2} } \\ & = \sqrt {\alpha^{2} \mathop \sum \limits_{i} \left( {\left| {x_{i} - \left| {x_{i} } \right|} \right| \cdot W_{i} } \right)^{2} + \beta^{2} \mathop \sum \limits_{i} \left( {\left| {y_{i} - \left| {y_{i} } \right|} \right| \cdot W_{i} } \right)^{2} + 2\alpha \beta \mathop \sum \limits_{i} \left( {\left| {x_{i} - \left| {x_{i} } \right|} \right| \cdot W_{i} \cdot \left| {y_{i} - \left| {y_{i} } \right|} \right| \cdot W_{i} } \right) } \\ \end{aligned}$$

It has been proved that \(\left| { < U,V > } \right| \le \left| U \right|\left| V \right|, \in R^{n}\). We have

$$\begin{aligned} f_{2} \left( z \right) & \le \sqrt {\alpha^{2} \left( {f_{2} \left( x \right)} \right)^{2} + \beta^{2} \left( {f_{2} \left( y \right)} \right)^{2} + 2\alpha \beta f_{2} \left( x \right)f_{2} \left( y \right)} \\ & = \alpha f_{2} \left( x \right) + \beta f_{2} \left( y \right) \\ \end{aligned}$$

Therefore, \(\left\| {\left( {x - \left| x \right|} \right) \circ W} \right\|_{2}\) is convex.

Appendix 2

For L1PC, given \(f_{1} = \left\| {\left( {x - \left| x \right|} \right) \circ W} \right\|_{1} = \left\| g \right\|_{1}\), where x and W are \(n \times 1\) vectors. W is constant during the iterative optimization procedure.

The gradient operator of \(f_{1}\) is

$$\nabla f_{1} = \left( {\frac{{\partial f_{1} }}{\partial x}} \right)^{*} = \left( {\frac{{\partial f_{1} }}{\partial g}\frac{\partial g}{\partial x} + \frac{{\partial f_{1} }}{{\partial \overline{g} }}\frac{{\partial \overline{g} }}{\partial x}} \right)^{*} = \left( {AB + CD} \right)^{*}$$

Here \(\left( X \right)^{*}\) represents the conjugate transpose of matrix X. \(\overline{X}\) represents the complex conjugate of X.

$$A = \frac{{\partial f_{1} }}{\partial g} = \left[ {\frac{{\partial f_{1} }}{{\partial g_{1} }}, \ldots \frac{{\partial f_{1} }}{{\partial g_{n} }}} \right]$$

Here,

$$\frac{{\partial f_{1} }}{{\partial g_{k} }} = \frac{{\partial \left| {g_{k} } \right|}}{{\partial g_{k} }} = \frac{1}{2} \frac{{\overline{{g_{k} }} }}{{\left| {g_{k} } \right| + \varepsilon }}$$

Here, \(\varepsilon\) is a small scalar value to avoid “division by zero”.

$$B = \frac{\partial g}{\partial x} = \frac{{\partial \left( {\left( {x - \left| x \right|} \right) \circ W} \right)}}{\partial x}$$
$${\text{Its}}\,{\text{entry}}\,B_{kl} = \frac{{\partial g_{k} }}{{\partial x_{l} }} = \left\{ {\begin{array}{*{20}l} {0 \quad \quad \quad \quad \quad \quad \quad \quad {\text{when}}\, k \ne l} \hfill \\ {\left( {1 - \frac{1}{2} \frac{{\overline{{x_{k} }} }}{{\left| {x_{k} } \right| + \varepsilon }}} \right) \cdot W_{k} \quad {\text{when}}\, k = l} \hfill \\ \end{array} } \right.$$
$$C = \frac{{\partial f_{1} }}{{\partial \overline{g} }} = \overline{{\left( {\frac{{\partial f_{1} }}{\partial g}} \right)}} = \overline{A}$$

and

$$D = \frac{{\partial \overline{g} }}{\partial x} = \frac{{\partial \left( {\left( {\overline{x} - \left| x \right|} \right) \circ W} \right)}}{\partial x}$$
$${\text{Its}}\,{\text{entry}}\,D_{kl} = \frac{{\partial \overline{{g_{k} }} }}{{\partial x_{l} }} = \left\{ {\begin{array}{*{20}l} {0\quad \quad \quad \quad \quad \quad \quad \,\,\, {\text{when}}\, k \ne l} \hfill \\ {\left( { - \frac{1}{2} \frac{{\overline{{x_{k} }} }}{{\left| {x_{k} } \right| + \varepsilon }}} \right) \cdot W_{k} \quad {\text{when}}\, k = l} \hfill \\ \end{array} } \right.$$

For L2PC, given \(f_{2} = \left\| { \left( {x - \left| x \right|} \right) \circ W} \right\|_{2} = g_{2}\), where x and W are \(n \times 1\) vectors. W is constant during the iterative optimization procedure.

The gradient operator of \(f_{2}\) is

$$\nabla f_{2} = \left( {\frac{{\partial f_{2} }}{\partial x}} \right)^{*} = \left( {\frac{{\partial f_{2} }}{\partial g}\frac{\partial g}{\partial x} + \frac{{\partial f_{2} }}{{\partial \overline{g} }}\frac{{\partial \overline{g} }}{\partial x}} \right)^{*} = \left( {AB + CD} \right)^{*}$$

Here \(\left( X \right)^{*}\) represents the conjugate transpose of matrix X. \(\overline{X}\) represents the complex conjugate of \(X\).

$$A = \frac{{\partial f_{2} }}{\partial g} = \left[ {\frac{{\partial f_{2} }}{{\partial g_{1} }}, \ldots \frac{{\partial f_{2} }}{{\partial g_{n} }}} \right]$$

Its entry

$$\frac{{\partial f_{2} }}{{\partial g_{k} }} = \frac{{\partial (g_{k} \overline{{g_{k} }} )}}{{\partial g_{k} }} = \frac{{\overline{{g_{k} }} }}{{2f_{2} }}$$
$$B = \frac{\partial g}{\partial x} = \frac{{\partial \left( {\left( {x - \left| x \right|} \right) \circ W} \right)}}{\partial x}$$
$${\text{Its}}\,{\text{entry}}\,B_{kl} = \frac{{\partial g_{k} }}{{\partial x_{l} }} = \left\{ {\begin{array}{*{20}l} {0 \quad \quad \quad \quad \quad \quad \quad \quad {\text{when}}\, k \ne l} \hfill \\ {\left( {1 - \frac{1}{2} \frac{{\overline{{x_{k} }} }}{{\left| {x_{k} } \right| + \varepsilon }}} \right) \cdot W_{k} \quad {\text{when}}\, k = l} \hfill \\ \end{array} } \right.$$
$$C = \frac{{\partial f_{1} }}{{\partial \overline{g} }} = \overline{{\left( {\frac{{\partial f_{1} }}{\partial g}} \right)}} = \overline{A}$$

and

$$D = \frac{{\partial \overline{g} }}{\partial x} = \frac{{\partial \left( {\left( {\overline{x} - \left| x \right|} \right) \circ W} \right)}}{\partial x}$$
$${\text{Its}}\,{\text{entry}}\,D_{kl} = \frac{{\partial \overline{{g_{k} }} }}{{\partial x_{l} }} = \left\{ {\begin{array}{*{20}l} {0\quad \quad \quad \quad \quad \quad \quad \,\,\, {\text{when}} \; k \ne l} \hfill \\ {\left( { - \frac{1}{2} \frac{{\overline{{x_{k} }} }}{{\left| {x_{k} } \right| + \varepsilon }}} \right) \cdot W_{k} \quad {\text{when}} \; k = l} \hfill \\ \end{array} } \right.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Hennig, J., Raithel, E. et al. An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging. Magn Reson Mater Phy 28, 459–472 (2015). https://doi.org/10.1007/s10334-015-0482-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-015-0482-7

Keywords

Navigation