Skip to main content
Log in

7 Tesla compatible in-bore display for functional magnetic resonance imaging

  • Short Communication
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Background and methods

A liquid crystal display was modified for use inside a 7 T MR magnet. SNR measurements were performed using different imaging sequences with the monitor absent, present, or activated. fMRI with a volunteer was conducted using a visual stimulus.

Results and discussion

SNR was reduced by 3.7 %/7.9 % in echo planar/fast-spin echo images when the monitor was on which can be explained by the limited shielding of the coated front window (40 dB). In the fMRI experiments, activated regions in the visual cortex were clearly visible. The monitor provided excellent resolution at minor SNR reduction in EPI images, and is thus suitable for fMRI at ultra-high field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270

    Article  PubMed  CAS  Google Scholar 

  2. Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, Zijl PCM (2003) Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Imaging 49:47–60

    CAS  Google Scholar 

  3. Engström M, Ragnehed M, Lundberg P (2005) Projection screen or video goggles as stimulus modality in functional magnetic resonance imaging. Magn Reson Imaging 23:695–699

    Article  PubMed  Google Scholar 

  4. Goodyear BG, Menon RS (2001) Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum Brain Mapp 14:210–217

    Article  PubMed  CAS  Google Scholar 

  5. Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskopf RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  PubMed  CAS  Google Scholar 

  6. Yacoub E, Shmuel A, Pfeuffer J, van de Moortele P-F, Adriany G, Andersen P, Vaughan T, Merkle H, Ugurbil K, Hu X (2001) Imaging brain functions in humans at 7 Tesla. Magn Reson Imaging 45:588–594

    CAS  Google Scholar 

  7. Kurniawan V, Klemen J, Chambers CD (2011) Microcontroller based fibre-optic visual presentation system for multisensory neuroimaging. J Neurosci Meth 202:28–37

    Article  Google Scholar 

  8. Pfeuffer J, van de Moortele P-F, Yacoub E, Shmuel A, Adriany G, Andersen P, Merkle H, Garwood M, Ugurbil K, Hu X (2002) Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 17:272–289

    Article  PubMed  Google Scholar 

  9. Lo Y, Pai K, Wu K, Chiu H (2011) A high-voltage input backlight module driver for multi-lamp lcd panels. Int J Circ Theor App 39(5):533–542

    Article  Google Scholar 

  10. Nam K-S, Kwon O-K (2012) Highly power-efficient LED backlight driving system for LCD tvs. IEEE T Consum Electr 58(2):264–268

    Article  Google Scholar 

  11. NEMA Standards Publication (2001) MS 1-2001: Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. National Electrical Manufacturers Association (NEMA)

  12. Peirce JW (2007) PsychoPy - psychophysics software in Python. J Neurosci Methods 162:8–13

    Article  PubMed  Google Scholar 

  13. Erasmus LJ, Hurter D, Naudé M, Kritzinger HG (2004) A short overview of MRI artefacts. S Afr J Radiol 8(2):13–17

    Google Scholar 

  14. Groebner J, Berger MC, Umathum R, Bock M, Semmler W, Rauschenberg J (2010) An LCD monitor for visual stimulation fMRI at 7 tesla. Proc Int Soc Magn Reson Med 18:3463

    Google Scholar 

  15. Gilles M, Paslakis G, Heinrich A, Szostek A, Meyer P, Nees F, Rauschenberg J, Groebner J, Krumm B, Semmler W, Flor H, Meyer-Lindenberg A, Deuschle M (2012) A Cross-Over Study of Effects on the Hypothalamus–Pituitary–Adrenal (HPA) Axis and the Sympathoadrenergic System in Magnetic Field strength Exposure From 0 to 7 T. Stress: doi:10.3109/10253890.2012.708949

  16. Frick C, Lang S, Kotchoubey B, Sieswerda S, Dinu-Biringer R, Berger MC, Veser S, Essig M, Barnow S (2012) Hypersensitivity in Borderline Personality Disorder during Mindreading. PLoS ONE 7(8):e41650. doi:10.1371/journal.pone.0041650

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Groebner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groebner, J., Berger, M.C., Umathum, R. et al. 7 Tesla compatible in-bore display for functional magnetic resonance imaging. Magn Reson Mater Phy 26, 371–375 (2013). https://doi.org/10.1007/s10334-012-0363-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0363-2

Keywords

Navigation