Skip to main content
Log in

k-t BLAST and SENSE accelerated time-resolved three-dimensional phase contrast MRI in an intracranial aneurysm

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

The objective of this study was to investigate the performance of k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) accelerated time-resolved 3D PC-MRI compared to SENSE (SENSitivity Encoding) acceleration in an in vitro and in vivo intracranial aneurysm.

Materials and methods

Non-accelerated, SENSE and k-t BLAST accelerated time-resolved 3D PC-MRI measurements were performed in vivo and in vitro. We analysed the consequences of various temporal resolutions in vitro.

Results

Both in vitro and in vivo measurements showed that the main effect of k-t BLAST was underestimation of velocity during systole. In the phantom, temporal blurring decreased with increasing temporal resolution. Quantification of the differences between the non-accelerated and accelerated measurements confirmed that in systole SENSE performed better than k-t BLAST in terms of mean velocity magnitude. In both in vitro and in vivo measurements, k-t BLAST had higher SNR compared to SENSE. Qualitative comparison between measurements showed good similarity.

Conclusion

Comparison with SENSE revealed temporal blurring effects in k-t BLAST accelerated measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PC-MRI:

Phase contrast MRI

k-t BLAST:

Broad-use linear acquisition speed-up technique

SENSE:

Sensitivity encoding

FFE:

Fast field echo

TOF:

Time of flight

NSA:

Number of signal averages

References

  1. Proust F, Gerardin E, Chazal J (2008) Unruptured intracranial aneurysm and microsurgical exclusion: the need of a randomized study of surgery versus natural history. J Neuroradiol 35(2):109–115

    Article  PubMed  CAS  Google Scholar 

  2. Spelle L, Pierot L (2008) Endovascular treatment of non-ruptured intracranial aneurysms: critical analysis of the literature. J Neuroradiol 35(2):116–120

    Article  PubMed  CAS  Google Scholar 

  3. Kayembe KN, Sasahara M, Hazama F (1984) Cerebral aneurysms and variations in the circle of Willis. Stroke 15(5):846–850

    Article  PubMed  CAS  Google Scholar 

  4. Chien A, Castro MA, Tateshima S, Sayre J, Cebral J, Vinuela F (2009) Quantitative hemodynamic analysis of brain aneurysms at different locations. AJNR Am J Neuroradiol 30(8):1507–1512

    Article  PubMed  CAS  Google Scholar 

  5. Wigstrom L, Sjoqvist L, Wranne B (1996) Temporally resolved 3D phase-contrast imaging. Magn Reson Med 36(5):800–803

    Article  PubMed  CAS  Google Scholar 

  6. Bammer R, Hope TA, Aksoy M, Alley MT (2007) Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magn Reson Med 57(1):127–140

    Article  PubMed  Google Scholar 

  7. Pelc NJ, Bernstein MA, Shimakawa A, Glover GH (1991) Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging 1(4):405–413

    Article  PubMed  CAS  Google Scholar 

  8. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  PubMed  CAS  Google Scholar 

  9. Thunberg P, Karlsson M, Wigstrom L (2003) Accuracy and reproducibility in phase contrast imaging using SENSE. Magn Reson Med 50(5):1061–1068

    Article  PubMed  Google Scholar 

  10. Brisman JL, Song JK, Newell DW (2006) Cerebral aneurysms. N Engl J Med 355(9):928–939

    Article  PubMed  CAS  Google Scholar 

  11. Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50(5):1031–1042

    Article  PubMed  Google Scholar 

  12. Marshall I (2006) Feasibility of k-t BLAST technique for measuring “seven-dimensional” fluid flow. J Magn Reson Imaging 23(2):189–196

    Article  PubMed  Google Scholar 

  13. Stadlbauer A, van der Riet W, Crelier G, Salomonowitz E (2010) Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST. Eur J Radiol 75(1):e15–e21

    Article  PubMed  Google Scholar 

  14. Stadlbauer A, van der Riet W, Globits S, Crelier G, Salomonowitz E (2009) Accelerated phase-contrast MR imaging: comparison of k-t BLAST with SENSE and Doppler ultrasound for velocity and flow measurements in the aorta. J Magn Reson Imaging 29(4):817–824

    Article  PubMed  Google Scholar 

  15. Lutz A, Bornstedt A, Manzke R, Etyngier P, Nienhaus GU, Rasche V (2011) Acceleration of tissue phase mapping by k-t BLAST: a detailed analysis of the influence of k-t-BLAST for the quantification of myocardial motion at 3T. J Cardiovasc Magn Reson 13:5

    Article  PubMed  Google Scholar 

  16. Carlsson M, Toger J, Kanski M, Bloch KM, Stahlberg F, Heiberg E, Arheden H (2011) Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson 13:55

    Article  PubMed  Google Scholar 

  17. Thunberg P, Emilsson K, Rask P, Kähäri A (2012) Flow and peak velocity measurements in patients with aortic valve stenosis using phase contrast MR accelerated with k-t BLAST. Eur J Radiol 81(9):2203–2207. doi:10.1016/j.ejrad.2011.06.034

    Article  PubMed  Google Scholar 

  18. Tsao J, Kozerke S, Boesiger P, Pruessmann KP (2005) Optimizing spatiotemporal sampling for k-t BLAST and k-t SENSE: application to high-resolution real-time cardiac steady-state free precession. Magn Reson Med 53(6):1372–1382

    Article  PubMed  Google Scholar 

  19. Baltes C, Kozerke S, Hansen MS, Pruessmann KP, Tsao J, Boesiger P (2005) Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE. Magn Reson Med 54(6):1430–1438

    Article  PubMed  Google Scholar 

  20. Tsao J, Tarnavaski O, Privetera M, Shetty S (2006) k-t denoising: exploiting spatiotemporal correlations for signal-to-noise improvement in dynamic imaging. Proceedings of the 14th annual meeting of ISMRM, Seattle, Washington, USA: 690

  21. van Ooij P, Guédon A, Poelma C, Schneiders J, Rutten MCM, Marquering HA, Majoie CB, vanBavel E, Nederveen AJ (2012) Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed 25(1):14–26

    Article  PubMed  Google Scholar 

  22. Lenz GW, Haacke EM, White RD (1989) Retrospective cardiac gating: a review of technical aspects and future directions. Magn Reson Imaging 7(5):445–455

    Article  PubMed  CAS  Google Scholar 

  23. Hansen MS, Kozerke S, Pruessmann KP, Boesiger P, Pedersen EM, Tsao J (2004) On the influence of training data quality in k-t BLAST reconstruction. Magn Reson Med 52(5):1175–1183

    Article  PubMed  Google Scholar 

  24. de Zwart JA, Ledden PJ, Kellman P, van Gelderen P, Duyn JH (2002) Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging. Magn Reson Med 47(6):1218–1227

    Article  PubMed  Google Scholar 

  25. Bernstein MA, Shimakawa A, Pelc NJ (1992) Minimizing TE in moment-nulled or flow-encoded two-and three-dimensional gradient-echo imaging. J Magn Reson Imaging 2(5):583–588

    Article  PubMed  CAS  Google Scholar 

  26. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22(3):651–671

    PubMed  Google Scholar 

  27. Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: IEEE conference on computer vision and pattern recognotion (CVPR), San diego, USA, p 430–436

  28. Price RR, Axel L, Morgan T, Newman R, Perman W, Schneiders N, Selikson M, Wood M, SR T (1990) Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys 17(2):287–295

    Article  PubMed  CAS  Google Scholar 

  29. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385

    Article  PubMed  Google Scholar 

  30. Plein S, Ryf S, Schwitter J, Radjenovic A, Boesiger P, Kozerke S (2007) Dynamic contrast-enhanced myocardial perfusion MRI accelerated with k-t sense. Magn Reson Med 58(4):777–785

    Article  PubMed  Google Scholar 

  31. Reeder SB, Wintersperger BJ, Dietrich O, Lanz T, Greiser A, Reiser MF, Glazer GM, Schoenberg SO (2005) Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 54(3):748–754

    Article  PubMed  Google Scholar 

  32. Conturo TE, Smith GD (1990) Signal-to-noise in phase angle reconstruction: dynamic range extension using phase reference offsets. Magn Reson Med 15(3):420–437

    Article  PubMed  CAS  Google Scholar 

  33. Bernstein MA, Ikezaki Y (1991) Comparison of phase-difference and complex-difference processing in phase-contrast MR angiography. J Magn Reson Imaging 1(6):725–729

    Article  PubMed  CAS  Google Scholar 

  34. Satoh T, Omi M, Ohsako C, Katsumata A, Yoshimoto Y, Tsuchimoto S, Onoda K, Tokunaga K, Sugiu K, Date I (2005) Influence of perianeurysmal environment on the deformation and bleb formation of the unruptured cerebral aneurysm: assessment with fusion imaging of 3D MR cisternography and 3D MR angiography. AJNR Am J Neuroradiol 26(8):2010–2018

    PubMed  Google Scholar 

  35. Kellman P, McVeigh ER (2005) Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54(6):1439–1447

    Article  PubMed  Google Scholar 

  36. de Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu R, Duyn JH (2004) Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn Reson Med 51(1):22–26

    Article  PubMed  Google Scholar 

  37. Kozerke S, Tsao J, Razavi R, Boesiger P (2004) Accelerating cardiac cine 3D imaging using k-t BLAST. Magn Reson Med 52(1):19–26

    Article  PubMed  Google Scholar 

  38. Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 26(10):2550–2559

    PubMed  Google Scholar 

  39. Mut F, Lohner R, Chien A, Tateshima S, Vinuela F, Putman C, Cebral J (2011) Computational hemodynamics framework for the analysis of cerebral aneurysms. Int J Numer Methods Biomed Eng 27(6):822–839

    Article  Google Scholar 

  40. Chang W, Kecskemeti S, Frydrychowicz A, Landgraf B, Aagaard-Kienitz B, Wu Y, Johnson K, Wieben O, Mistretta C, Turski P (2011) Calculation of wall shear stress in intracranial cerebral aneurysms using high resolution phase contrast MRA (PC-VIPR). Proceedings of the international society of magnetic resonance in medicine 19:3307

  41. Hsiao A, Lustig M, Alley MT, Murphy M, Vasanawala SS (2011) Quantitative assessment of blood flow with 4D phase-contrast MRI and autocalibrating parallel imaging compressed sensing. Proceedings of the international society of magnetic resonance in medicine 19:1190

    Google Scholar 

  42. Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim WY (2009) k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 62(3):706–716

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Gertjan Bon from the University of Amsterdam for the glass blowing of the phantom and Paul Groot of the Department of Radiology of the Academic Medical Centre/University of Amsterdam for the inventive ECG signal acquisition. The authors would also like to thank Gustav Strijkers of the Department of Biomedical NMR of the University of Technology Eindhoven for advice on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pim van Ooij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Ooij, P., Guédon, A., Marquering, H.A. et al. k-t BLAST and SENSE accelerated time-resolved three-dimensional phase contrast MRI in an intracranial aneurysm. Magn Reson Mater Phy 26, 261–270 (2013). https://doi.org/10.1007/s10334-012-0336-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0336-5

Keywords

Navigation