Skip to main content
Log in

Blood longitudinal (T 1) and transverse (T 2) relaxation time constants at 11.7 Tesla

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The goal of the study was to determine blood T 1 and T 2 values as functions of oxygen saturation (Y), temperature (Temp) and hematocrit (Hct) at an ultrahigh MR field (11.7 T) and explore their impacts on physiological measurements, including cerebral blood flow (CBF), blood volume (CBV) and oxygenation determination.

Materials and methods

T 1 and T 2 were simultaneously measured. Temperature was adjusted from 25 to 40°C to determine Temp dependence; Hct of 0.17–0.51 to evaluate Hct dependence at 25 and 37°C; and Y of 40–100% to evaluate Y dependence at 25 and 37°C. Comparisons were made with published data obtained at different magnetic field strengths (B 0).

Results

T 1 was positively correlated with Temp, independent of Y, and negatively correlated with Hct. T 2 was negatively correlated with Temp and Hct, but positively correlated with Y, in a non-linear fashion. T 1 increased linearly with B 0, whereas T 2 decreased exponentially with B0.

Conclusion

This study reported blood T 1 and T 2 measurements at 11.7 T for the first time. These blood relaxation data could have implications in numerous functional and physiological MRI studies at 11.7 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Silvennoinen MJ, Kettunen MI, Kauppinen RA (2003) Effects of hematocrit and oxygen saturation level on blood spin-lattice relaxation. Magn Reson Med 49:568–571

    Article  PubMed  Google Scholar 

  2. Wang J, Aguirre GK, Kimberg DY et al (2003) Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 49:796–802

    Article  PubMed  Google Scholar 

  3. Lu H, Golay X, Pekar JJ et al (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50:263–274

    Article  PubMed  Google Scholar 

  4. Duong TQ, Yacoub E, Adriany G et al (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49:1019–1027

    Article  PubMed  Google Scholar 

  5. Golay X, Silvennoinen MJ, Zhou J et al (2001) Measurement of tissue oxygen extraction ratios from venous blood T(2): increased precision and validation of principle. Magn Reson Med 46:282–291

    Article  PubMed  CAS  Google Scholar 

  6. Lu H, Ge Y (2008) Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med 60:357–363

    Article  PubMed  Google Scholar 

  7. Xu F, Ge Y, Lu H (2009) Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 62:141–148

    Article  PubMed  Google Scholar 

  8. Oja JM, Gillen JS, Kauppinen RA et al (1999) Determination of oxygen extraction ratios by magnetic resonance imaging. J Cereb Blood Flow Metab 19:1289–1295

    Article  PubMed  CAS  Google Scholar 

  9. Lu H, Clingman C, Golay X et al (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 52:679–682

    Article  PubMed  Google Scholar 

  10. Silvennoinen MJ, Clingman CS, Golay X et al (2003) Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med 49:47–60

    Article  PubMed  CAS  Google Scholar 

  11. Zhao JM, Clingman CS, Narvainen MJ et al (2007) Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn Reson Med 58:592–597

    Article  PubMed  Google Scholar 

  12. Dobre MC, Ugurbil K, Marjanska M (2007) Determination of blood longitudinal relaxation time (T1) at high magnetic field strengths. Magn Reson Imaging 25:733–735

    Article  PubMed  Google Scholar 

  13. Lee SP, Silva AC, Ugurbil K et al (1999) Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med 42:919–928

    Article  PubMed  CAS  Google Scholar 

  14. Qin Q, Grgac K, van Zijl PC (2011) Determination of whole-brain oxygen extraction fractions by fast measurement of blood T(2) in the jugular vein. Magn Reson Med 65:471–479

    Article  PubMed  Google Scholar 

  15. Atalay MK, Reeder SB, Zerhouni EA et al (1995) Blood oxygenation dependence of T1 and T2 in the isolated, perfused rabbit heart at 4.7T. Magn Reson Med 34:623–627

    Article  PubMed  CAS  Google Scholar 

  16. Brooks RA, Di Chiro G (1987) Magnetic resonance imaging of stationary blood: a review. Med Phys 14:903–913

    Article  PubMed  CAS  Google Scholar 

  17. Muir ER, Shen Q, Duong TQ (2008) Cerebral blood flow MRI in mice using the cardiac-spin-labeling technique. Magn Reson Med 60:744–748

    Article  PubMed  Google Scholar 

  18. Davis TL, Kwong KK, Weisskoff RM et al (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95:1834–1839

    Article  PubMed  CAS  Google Scholar 

  19. Lu H, Golay X, Pekar JJ et al (2004) Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. J Cereb Blood Flow Metab 24:764–770

    Article  PubMed  Google Scholar 

  20. Lin AL, Fox PT, Yang Y et al (2008) Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF. Magn Reson Med 60:380–389

    Article  PubMed  Google Scholar 

  21. Mintun MA, Raichle ME, Martin WR et al (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177–187

    PubMed  CAS  Google Scholar 

  22. Yacoub E, Duong TQ, Van De Moortele PF et al (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49:655–664

    Article  PubMed  Google Scholar 

  23. Barth M, Moser E (1997) Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol (Noisy-le-grand) 43:783–791

    CAS  Google Scholar 

  24. Silva AC, Koretsky AP (2002) Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci USA 99(23):15182–15187

    Article  PubMed  CAS  Google Scholar 

  25. Kalthoff D, Seehafer JU, Po C, Wiedermann D, Hoehn M (2011) Functional connectivity in the rat at 11.7 T: impact of physiological noise in resting state fMRI. Neuroimage 54(4):2828–2839

    Article  PubMed  Google Scholar 

  26. De La Garza BH, Li G, Muir E, Shih YY, Duong TQ (2011) BOLD fMRI of visual stimulation in the rat retina at 11.7 tesla. NMR in Biomed 24:188–193

    Article  Google Scholar 

Download references

Acknowledgments

We thank Hsiao-Ying Wey of the Research Imaging Institute and Saaussan Madi of Bruker Biospin for technical support. This work was supported by in part by the NIH (R01EY014211, R01EY018855) and VA MERIT. We are also grateful for the resources and support from NIH/NCRR (S10 RR023038), from the Defense Advanced Research Projects Agency (Comprehensive Facility for Animal Imaging Research (CFAIR), HR0011-07-C-0027), and the Texas Emerging Technology Fund from the Office of the Governor of Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Ling Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, AL., Qin, Q., Zhao, X. et al. Blood longitudinal (T 1) and transverse (T 2) relaxation time constants at 11.7 Tesla. Magn Reson Mater Phy 25, 245–249 (2012). https://doi.org/10.1007/s10334-011-0287-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-011-0287-2

Keywords

Navigation