Skip to main content

Advertisement

Log in

Local SAR management by RF Shimming: a simulation study with multiple human body models

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Parallel transmission facilitates a relatively direct control of the RF transmit field. This is usually applied to improve the RF field homogeneity but might also allow a reduction of the specific absorption rate (SAR) to increase freedom in sequence design for high-field MRI. However, predicting the local SAR is challenging as it depends not only on the multi-channel drive but also on the individual patient.

Materials and methods

The potential of RF shimming for SAR management is investigated for a 3 T body coil with eight independent transmit elements, based on Finite-Difference Time-Domain (FDTD) simulations. To address the patient-dependency of the SAR, nine human body models were generated from volunteer MR data and used in the simulations. A novel approach to RF shimming that enforces local SAR constraints is proposed.

Results

RF shimming substantially reduced the local SAR, consistently for all volunteers. Using SAR constraints, a further SAR reduction could be achieved with only minor compromises in RF performance.

Conclusion

Parallel transmission can become an important tool to control and manage the local SAR in the human body. The practical use of local SAR constraints is feasible with consistent results for a variety of body models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katscher U, Börnert P, Leussler C, van den Brink J (2003) Transmit sense. Magn Reson Med 49(1): 144–150

    Article  PubMed  Google Scholar 

  2. Zhu Y (2004) Parallel excitation with an array of transmit coils. Magn Reson Med 51(4): 775–784

    Article  PubMed  Google Scholar 

  3. Grissom W, Yip C, Zhang Z, Stenger V, Fessler J, Noll D (2006) Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med 56(3): 620–629

    Article  PubMed  Google Scholar 

  4. Hoult D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12(1): 46–67

    Article  PubMed  CAS  Google Scholar 

  5. Ibrahim T, Lee R, Baertlein B, Abduljalil A, Zhu H, Robitaille P (2001) Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imaging 19(10): 1339–1347

    Article  PubMed  CAS  Google Scholar 

  6. International Electrotechnical Commission (2010) International standard, medical equipment—IEC 60601-2-33: particular requirements for the safety of Magnetic resonance equipment, 3rd edn

  7. Wang Z, Lin J, Mao W, Liu W, Smith M, Collins C (2007) SAR and temperature: simulations and comparison to regulatory limits for MRI. J Magn Reson Imaging 26(2): 437–441

    Article  PubMed  Google Scholar 

  8. Alon L, Deniz C, Lattanzi R, Wiggins G, Brown R, Sodickson D, Zhu Y (2010) An automated method for subject specific global SAR prediction in parallel transmission. In: Proceedings of the ISMRM, Stockholm, Sweden, p 780

  9. Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dössel O (2009) Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 28(9): 1365–1374

    Article  PubMed  Google Scholar 

  10. Seifert F, Wubbeler G, Junge S, Ittermann B, Rinneberg H (2007) Patient safety concept for multichannel transmit coils. J Magn Reson Imaging 26(5): 1315–1321

    Article  PubMed  Google Scholar 

  11. Collins C, Wang Z, Smith M (2007) A conservative method for ensuring safety within transmit arrays. In: Proceedings of the ISMRM, Berlin, Germany, p 1092

  12. Graesslin I, Glaesel D, Biederer S, Vernickel P, Katscher U, Schweser F, Annighoefer B, Dingemans H, Mens G, van Yperen G, Harvey P (2008) Comprehensive RF safety concept for parallel transmission systems. In: Proceedings of the ISMRM, Toronto, Canada, p 74

  13. Brunner D, Paska J, Fröhlich J, Prüssmann K (2009) SAR assessment of transmit arrays: deterministic calculation of worst- and best-case performance. In: Proceedings of the ISMRM, Honolulu, Hawaii, USA, p 4803

  14. van den Berg C, van den Bergen B, van den Kamer J, Raaymakers B, Kroeze H, Bartels L, Lagendijk J (2007) Simultaneous B1+ homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 57(3): 577–586

    Article  PubMed  Google Scholar 

  15. Cloos M, Luong M, Ferrand G, Amadon A, Le Bihan D, Boulant N (2010) Local SAR reduction in parallel excitation based on channel-dependent Tikhonov parameters. J Magn Reson Imaging 32(5): 1209–1216

    Article  PubMed  Google Scholar 

  16. Lee J, Gebhardt M, Wald L, Adalsteinsson E (2010) Parallel transmit RF design with local SAR constraints. In: Proceedings of the ISMRM, Stockholm, Sweden, p 105

  17. Sbrizzi A, Hoogduin H, Lagendijk J, Luijten P, Sleijpen G, van den Berg C (2010) A fast algorithm for local-1gram-SAR optimized parallel-transmit RF-pulse design. In: Proceedings of the ISMRM, Stockholm, Sweden, p 4931

  18. Brunner D, Prüssmann K (2010) Optimal design of multiple-channel RF pulses under strict power and SAR constraints. Magn Reson Med 63(5): 1280–1291

    Article  PubMed  Google Scholar 

  19. Zelinski A, Goyal V, Angelone L, Bonmassar G, Wald L, Adalsteinsson E (2007) Designing RF pulses with optimal specific absorption rate (SAR) characteristics and exploring excitation fidelity, SAR and pulse duration tradeoffs. In: Proceedings of the ISMRM, Berlin, Germany, p 1699

  20. Liu W, Collins C, Smith M (2005) Calculations of B1, distribution, specific energy absorption rate, and intrinsic signal-to-noise ratio for a body-size birdcage coil loaded with different human subjects at 64 and 128 MHz. Appl Magn Reson 29(1): 5–18

    Article  Google Scholar 

  21. Buchenau S, Haas M, Hennig J, Zaitsev M (2009) A comparison of local SAR using individual patient data and a patient template. In: Proceedings of the ISMRM, Honolulu, Hawaii, USA, p 4798

  22. Zhai Z, Morich M, DeMeester G, Harvey P (2009) A study of the relationship between B1-field uniformity, body aspect ratio and SAR for whole-body RF Shimming at 3.0T. In: Proceedings of the ISMRM, Honolulu, Hawaii, USA, p 3045

  23. van den Bergen B, van den Berg C, Kroeze H, Bartels L, Lagendijk J (2006) The effect of body size and shape on RF safety and B1 field homogeneity at 3T. In: Proceedings of the ISMRM, Seattle, WA, USA, p 2040

  24. Wang Z, Penney C, Luebbers R, Collins C (2008) Poseable male and female numerical body models for field calculations in MRI. In: Proceedings of the ISMRM, Toronto, Canada, p 75

  25. Yeo D, Wang Z, Loew W, Vogel M, Hancu I (2011) Local specific absorption rate in high-pass birdcage and transverse electromagnetic body coils for multiple human body models in clinical landmark positions at 3T. J Magn Reson Imaging 33(5): 1209–1217

    Article  PubMed  Google Scholar 

  26. Homann H, Börnert P, Eggers H, Nehrke K, Dössel O, Graesslin I (2011a) Towards individualized SAR models and in vivo validation. Magn Reson Med (in early view). doi:10.1002/mrm.22948

  27. Yarnykh V (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57(1): 192–200

    Article  PubMed  Google Scholar 

  28. Vernickel P, Röschmann P, Findeklee C, Lüdeke K, Leussler C, Overweg J, Katscher U, Grasslin I, Schünemann K (2007) Eight-channel transmit/receive body MRI coil at 3T. Magn Reson Med 58(2): 381–389

    Article  PubMed  CAS  Google Scholar 

  29. Vernickel P, Findeklee C, Eichmann J, Graesslin I (2007b) Active digital decoupling for multi-channel transmit MRI systems. In: Proceedings of the ISMRM, Berlin, Germany, p 170

  30. IEEE (2008) IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95.3-2002

  31. Bardati F, Borrani A, Gerardino A, Lovisolo G (1995) SAR optimization in a phased array radiofrequency hyperthermia system. IEEE Trans Biomed Eng 42(12): 1201–1207

    Article  PubMed  CAS  Google Scholar 

  32. Gebhardt M, Diehl D, Adalsteinsson E, Wald L, Eichfelder G (2010) Evaluation of maximum local SAR for parallel transmission (pTx) pulses based on pre-calculated field data using a selected subset of virtual observation points. In: Proceedings of the ISMRM, Stockholm, Sweden, p 1441

  33. Eichfelder G, Gebhardt M (2011) Local specific absorption rate control for parallel transmission by virtual observation points. Magn Reson Med (in early view). doi:10.1002/mrm.22927

  34. Wang Z, Oh S, Smith M, Collins C (2007b) RF Shimming considering both excitation homogeneity and SAR. In: Proceedings of the ISMRM, Berlin, Germany, p 1022

  35. Setsompop K, Wald L, Alagappan V, Gagoski B, Adalsteinsson E (2008) Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels. Magn Reson Med 59(4): 908–915

    Article  PubMed  CAS  Google Scholar 

  36. Kassakian P (2006) Convex approximation and optimization with applications in magnitude filter design and radiation pattern synthesis. PhD thesis, University of California at Berkeley

  37. Boyd S, Vandenberghe L (2009) Convex optimization. Cambridge University Press, Cambridge

    Google Scholar 

  38. Caputa K, Okoniewski M, Stuchly M (1999) An algorithm for computations of the power deposition in human tissue. IEEE Antennas Propag Mag 41(4): 102–107

    Article  Google Scholar 

  39. Oh S, Carluccio G, Collins C (2011) Method and tool for improved, rapid N-gram average SAR determination. In: Proceedings of the ISMRM, Montreal, Canada, p 3868

  40. Bottomley P, Redington R, Edelstein W, Schenck J (1985) Estimating radiofrequency power deposition in body NMR imaging. Magn Reson Med 2(4): 336–349

    Article  PubMed  CAS  Google Scholar 

  41. Homann H, Graesslin I, Voigt T, Börnert P, Dössel O (2009) The influence of body size on the specific absorption rate (SAR). In: Proceedings of the ESMRMB (Magma 22, Suppl 1), p 522

  42. Harvey P, Zhai Z, Morich M, Mens G, van Yperen G, DeMeester G, Graesslin I, Hoogeveen R (2009) SAR behavior during whole-body multitransmit RF Shimming at 3.0T. In: Proceedings of the ISMRM, Honolulu, Hawaii, USA, p 4786

  43. Homann H, Börnert P, Dössel O, Graesslin I (2011b) A robust concept for real-time SAR calculation in parallel transmission. In: Proceedings of the ISMRM, Montreal, Canada, p 3843

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Homann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homann, H., Graesslin, I., Eggers, H. et al. Local SAR management by RF Shimming: a simulation study with multiple human body models. Magn Reson Mater Phy 25, 193–204 (2012). https://doi.org/10.1007/s10334-011-0281-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-011-0281-8

Keywords

Navigation