Skip to main content
Log in

Morphological study of the anthropoid thoracic cage: scaling of thoracic width and an analysis of rib curvature

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

An Erratum to this article was published on 16 January 2008

Abstract

While a relatively broad thorax and strongly curved ribs are widely regarded as common features of living hominoids, few studies have quantitatively examined these traits by methods other than calculating the chest index. The present study aims to quantify variations in thoracic cage morphology for living anthropoids. The odd-numbered ribs (first to eleventh) were articulated with the corresponding vertebrae and the cranial and lateral views subsequently photographed. Rib profiles were digitized in both views and line-fitted by a Bézier curve to create a three-dimensional morphological data set. When thoracic cage width was scaled against body mass, Hylobates (and possibly Pongo) plotted above non-hominoid anthropoids at almost all rib levels, while Pan did not differ from non-hominoid anthropoids. The overall pattern of the normalized thoracic width differed between Hylobates and other hominoids. In Hylobates, an upward convex curve was seen between the first and seventh ribs while a more linear pattern was observed in Pan and Pongo. This result quantitatively confirmed that the barrel-shaped thoracic cage in Hylobates can be distinguished from the funnel-shaped form in other hominoids. Conversely, all hominoids shared two distinct features in the upper half-thorax: (1) a pronounced dorsal protrusion of the proximal part of the rib in accordance with ventral displacement of the thoracic spine and (2) a relatively medially projecting sternal end. Although these features are likely to provide some mechanical advantage in orthograde and/or suspensory positional behaviors, they were barely present in the suspensory Ateles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews P, Groves CP (1976) Gibbons and brachiation. In: Rambaugh DM (ed) Gibbon and Siamang, vol 4: suspensory behavior, locomotion, and other behaviors of captive gibbons. S Karger, Basel, pp 167–218

    Google Scholar 

  • Cartmill M, Milton K (1977) The lorisiform wrist joint and the evolution of “brachiating” adaptations in the Hominoidea. Am J Phys Anthropol 47:249–272

    Article  PubMed  CAS  Google Scholar 

  • Chan LK (1997) Thoracic shape and shoulder biomechanics in primates. PhD thesis, Duke University, Durham

  • Chan LK (2007) Scapular position in primates. Folia Primatol 78:19–35

    Article  PubMed  Google Scholar 

  • Erikson GE (1963) Brachiation in New World monkeys and in anthropoid apes. Symp Zool Soc Lond 10:135–164

    Google Scholar 

  • Fleagle JG (1976) Locomotion and posture of the Malayan siamang and implications for hominoid evolution. Folia Primatol 26:245–269

    Article  PubMed  CAS  Google Scholar 

  • Gebo DL (eds) (1993) Postcranial adaptation in nonhuman primates. Northern Illinois University Press, DeKalb

  • Gebo DL (1996) Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthropol 101:55–92

    Article  PubMed  CAS  Google Scholar 

  • Gehr P, Mwangi DK, Ammann A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Respir Physiol 44:61–86

    Article  PubMed  CAS  Google Scholar 

  • Harrison T (1986) A reassessment of the phylogenetic relationships of Oreopithecus bambolii Gervais. J Hum Evol 15:541–583

    Article  Google Scholar 

  • Harrison T (1991) The implications of Oreopithecus bambolii for the origins of bipedalism. In: Coppens Y, Senut B (eds) Origine(s) de la Bipédie chez les Hominidés. CNRS, Paris, pp 235–244

    Google Scholar 

  • Hosaka M (1992) Modeling of curves and surfaces in CAD/CAM. Springer, Berlin

    Google Scholar 

  • Huitema BE (1980) The analysis of covariance and alternatives. Wiley, New York

    Google Scholar 

  • Hunt KD (1991a) Positional behavior in the Hominoidea. Int J Primatol 12:95–118

    Article  Google Scholar 

  • Hunt KD (1991b) Mechanical implications of chimpanzee positional behavior. Am J Phys Anthropol 86:521–536

    Article  PubMed  CAS  Google Scholar 

  • Hurov JR (1987) Terrestrial locomotion and back anatomy in vervets (Cercopithecus aethiops) and patas monkeys (Erythrocebus patas). Am J Primatol 13:297–311

    Article  Google Scholar 

  • Jellema LM, Latimer B, Walker A (1993) The rib cage. In: Walker A, Leakey R (eds) The Nariokotome Homo erectus skeleton. Harvard University Press, Cambridge, pp 294–325

    Google Scholar 

  • Jungers WL (1984) Scaling of the hominoid locomotor skeleton with special reference to lesser apes. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes: evolutionary and behavioural biology. Edinburgh University Press, Edinburgh, pp 146–169

    Google Scholar 

  • Larson SG (1988) Subscapularis function in gibbons and chimpanzees: implications for interpretation of humeral head torsion in hominoids. Am J Phys Anthropol 76:449–462

    Article  Google Scholar 

  • Larson SG (1998) Parallel evolution in the hominoid trunk and forelimb. Evol Anthropol 6:87–99

    Article  Google Scholar 

  • MacLatchy L, Gebo D, Kityo R, Pilbeam D (2000) Postcranial functional morphology of Morotopithecus bishopi, with implications for the evolution of modern ape locomotion. J Hum Evol 39:159–183

    Article  PubMed  CAS  Google Scholar 

  • Moyà-Solà S, Köhler M (1996) A Dryopithecus skeleton and the origins of great-ape locomotion. Nature 379:156–159

    Article  PubMed  Google Scholar 

  • Moyà-Solà S, Köhler M, Alba DM, Casanovas-Vilar I, Galindo J (2004) Pierolapithecus catalaunicus, a new Middle Miocene great ape from Spain. Nature 306:1339–1344

    Google Scholar 

  • Nakatsukasa M, Kunimatsu Y, Nakano Y, Ishida H (2007) Vertebral morphology of Nacholapithecus kerioi based on KNM-BG 35250. J Hum Evol 52:347–369

    Article  PubMed  Google Scholar 

  • Ohman JC (1986) The first rib of hominoids. Am J Phys Anthropol 70:209–229

    Article  PubMed  CAS  Google Scholar 

  • Payseur BA, Covert HH, Vinyard CJ, Dagosto M (1999) New body mass estimates for Omomys carteri, a Middle Eocene primate from North America. Am J Phys Anthropol 109:41–52

    Article  PubMed  CAS  Google Scholar 

  • Pilbeam D, Rose MD, Barry JC, Shah SMI (1990) New Sivapithecus humeri from Pakistan and the relationship of Sivapithecus and Pongo. Nature 348:237–239

    Article  PubMed  CAS  Google Scholar 

  • Preuschoft H, Schmidt M, Hayama S, Okada M (2003) The influence of three-dimensional movements of the forelimb on the shape of the thorax and its importance for erect body posture. Cour Forsch Inst Senck 243:9–24

    Google Scholar 

  • Rose MD (1988) Another look at the anthropoid elbow. J Hum Evol 17:193–224

    Article  Google Scholar 

  • Rose MD (1989) New postcranial specimens of catarrhines from the Middle Miocene Chinji Formation, Pakistan: descriptions and a discussion of proximal humeral functional morphology in anthropoids. J Hum Evol 18:131–162

    Article  Google Scholar 

  • Ruff CB (2003) Long bone articular and diaphyseal structure in Old World monkeys and apes. II: estimation of body mass. Am J Phys Anthropol 120:16–37

    Article  PubMed  Google Scholar 

  • Sarmiento EE (1995) Cautious climbing and folivory: a model of hominoid differentiation. Hum Evol 10:289–321

    Article  Google Scholar 

  • Sawyer GJ, Maley B (2005) Neanderthal reconstructed. Anat Rec Part B 283:23–31

    Article  CAS  Google Scholar 

  • Schmid P (1983) Eine Rekonstrucktion des Skelettes von A.L. 288–1 (Hadar) und deren Konsequenzen. Folia Primatol 40:283–306

    PubMed  CAS  Google Scholar 

  • Schmid P (1991) The trunk of the australopithecines. In: Coppens Y, Senut B (eds) Origine(s) de la Bipédie chez les Hominidés. CNRS, Paris, pp 225–234

    Google Scholar 

  • Schultz AH (1930) The skeleton of the trunk and limbs of higher primates. Hum Biol 2:303–438

    Google Scholar 

  • Schultz AH (1941) Growth and development of the orang-utan. Contrib Embryol 29:57–110

    Google Scholar 

  • Schultz AH (1942) Growth and development of the proboscis monkey. Bull Mus Comp Zool 89:277–314

    Google Scholar 

  • Schultz AH (1956) Postembryonic age changes. Primatologia 1:887–964

    Google Scholar 

  • Schultz AH (1960) Einige Beobachtungen und Masse am Skelett von Oreopithecus im Vergleich mit anderen catarrhinen Primaten. Z Morphol Anthropol 50:136–149

    Google Scholar 

  • Schultz AH (1961) Vertebral column and thorax. Primatologia 4:1–66

    Google Scholar 

  • Shea BT (1981) Relative growth of the limbs and trunk in the African apes. Am J Phys Anthropol 56:179–201

    Article  PubMed  CAS  Google Scholar 

  • Takahashi LK (1990) Morphological basis of arm-swinging: multivariate analyses of the forelimbs of Hylobates and Ateles. Folia Primatol 54:70–85

    PubMed  CAS  Google Scholar 

  • Voisin JL (2006) Clavicle, a neglected bone: morphology and relation to arm movements and shoulder architecture in primates. Anat Rec Part A 288:944–953

    Google Scholar 

  • Ward CV (1993) Torso morphology and locomotion in Proconsul nyanzae. Am J Phys Anthropol 92:291–328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS-HOPE, a Grant for the Biodiversity Research of the 21st Century COE (A14), a Grant-in-Aid for Scientific Research on Priority Areas “Emergence of Adaptive Motor Function through Interaction between Body, Brain and Environment” and by the Cooperation Research Program of the Primate Research Institute, Kyoto University. We are grateful to Dr. Kunimatsu Yutaka, Primate Research Institute, Kyoto University, Japan; Dr. Takano Tomo, Japan Monkey Centre; Dr. Richard Kraft, The Bavarian State Collection of Zoology, München, Germany; and Professor Dr. Christoph P.E. Zollikofer and Dr. Marcia S. Ponce de León, University of Zürich, Switzerland, for their courtesy in allowing access to specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyuki Kagaya.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10329-007-0074-x

About this article

Cite this article

Kagaya, M., Ogihara, N. & Nakatsukasa, M. Morphological study of the anthropoid thoracic cage: scaling of thoracic width and an analysis of rib curvature. Primates 49, 89–99 (2008). https://doi.org/10.1007/s10329-007-0064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-007-0064-z

Keywords

Navigation