Skip to main content

Advertisement

Log in

Comparative and functional anatomy of phalanges in Nacholapithecus kerioi, a Middle Miocene hominoid from northern Kenya

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

We describe phalanges of the KNM-BG 35250 Nacholapithecus kerioi skeleton from the Middle Miocene of Kenya. Phalanges of N. kerioi display similarities to those of Proconsul heseloni despite their enhanced robusticity. They do not show highly specialized features as in living suspensory primates. However, N. kerioi manifests several distinctive features that are observed in neither living arboreal quadrupeds nor P. heseloni or P. nyanzae. The most remarkable of them is its phalangeal elongation. N. kerioi phalanges (particularly pedal) are as long as those of Pan despite its much smaller body size. While lengthened digits enable a secure grip of supports and are especially adaptive for grasping large vertical trunks, the skeletal and soft tissues are subjected to greater stress. Probably, strong selective pressures favored powerful hallucal/pollical assisted grips. Although this functional adaptation does not exclude the possible use of the terrestrial environment, arboreal behavioral modes must have been crucial in its positional repertoire. N. kerioi is distinguished from P. heseloni in the greater size of its manual phalanges over its pedal phalanges. These derived features of N. kerioi suggest positional modes supporting more weight on the forelimb, and which occur more frequently on vertical supports. If Proconsul is referred to as an "above-branch arboreal quadruped" with a deliberate and effective climbing capability, N. kerioi may be thought of as an "orthograde climber". While living apes are powerful orthograde climbers, they are also more or less suspensory specialists. Suspensory behavior (plus climbing) and pronograde quadrupedalism (plus climbing) are the two main arboreal behavioral adaptations in living anthropoids. Thus, N. kerioi is an unusual fossil primate in that it cannot be incorporated into this dichotomy. It is plausible that a N. kerioi-like orthograde climber with large forelimbs and cheiridia was a precursor of suspensory living apes, and N. kerioi may demonstrate what an initial hominoid of this grade might have looked like.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7a–f.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11a, b.
Fig. 12a–h.
Fig. 13a–e.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24

Similar content being viewed by others

Notes

  1. Pickford et al. (1987) suggested that an isolated P3 collected from Nachola might represent Proconsul sp. because of its having a much higher buccal cusp than the lingual one. However, with more specimens, this feature is now considered to be characteristic of N. kerioi.

  2. Ward et al. (1999) advocated the transfer of K. africanus to a new genus Equatorius, which includes specimens from Maboko and Kipsaramon. There are several differences between Maboko and Fort Ternan species. However, arguments over this classification are unsettled. Specimens of wickeri are so far scarce and materials from Maboko and Fort Ternan share some common features (e.g., low and thick mandibular corpus, anteriorly inclined symphysis). We tentatively follow the traditional classification that Kenyapithecus includes africanus and wickeri because whether a generic-level distinction is appropriate is not an important point in our discussion.

References

  • Andrews P (1992) Evolution and environment in the Hominoidea. Nature 360:641–646

    CAS  PubMed  Google Scholar 

  • Andrews P, Groves CP (1976) Gibbons and brachiation. In Rumbaugh DM (ed) Gibbons and siamang: suspensory behavior, locomotion, and other behaviors of captive gibbons: cognition. Karger, Basel, pp 167–218

  • Andrews P, Walker A (1976) The primate and other fauna from Fort Ternan, Kenya. In: Isaac GL, McCown E (eds) Human origins. Benjamin, Menlo Park, Calif., pp 279–304

  • Andrews P, Begun DR, Zylstra M (1997) Interrelationships between functional morphology and paleoenvironments in Miocene hominoids. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum, New York, pp 29–58

  • Avis V (1962) Brachiation: the crucial issue for man's ancestry. Southwest J Anthrop 18:119–148

    Google Scholar 

  • Beard KC, Teaford MF, Walker A (1986) New wrist bones of Proconsul africanus and P. nyanzae from Rusinga Island, Kenya. Folia Primatol 47:97–118

    CAS  PubMed  Google Scholar 

  • Begun DR (1988) Catarrhine phalanges from the late Miocene (Vallesian) of Rudabánya, Hungary. J Hum Evol 17:413–438

    Google Scholar 

  • Begun DR (1993) New catarrhine phalanges from Rudabánya (Northeastern Hungary) and the problem of parallelism and the problem of parallelism and convergence in hominoid postcranial morphology. J Hum Evol 24:373–402

    Article  Google Scholar 

  • Begun DR (2001) African and Eurasian Miocene hominoids and the origins of the Hominidae. In: de Bonis L, Koufos GD, Andrews P (eds) Phylogeny of the Neogene hominoid primates of Eurasia. Cambridge University Press, Cambridge, pp 231–253

  • Begun DR, Teaford MF, Walker A (1994) Comparative and functional anatomy of Proconsul phalanges from the Kaswanga Primate Site, Rusinga Island, Kenya. J Hum Evol 26:89–165

    Article  Google Scholar 

  • Beherensmeyer AK, Deino AL, Hill A, Kingston JD, Saunders JJ (2002) Geology and geochronology of the middle Miocene Kipsaramon site complex, Muruyur Beds, Tugen Hills. J Hum Evol 42:11–38

    Article  PubMed  Google Scholar 

  • Benefit BR, McCrossin ML (2000) Middle Miocene hominoid origins. Science 287:2375

    CAS  Google Scholar 

  • Cant JGH (1986) Locomotion and feeding postures of spider and howling monkeys: Field study and evolutionary interpretation. Folia Primatol 46:1–14

    CAS  PubMed  Google Scholar 

  • Cant JGH (1987) Positional behavior of female Bornean orangutans (Pongo pygmaeus). Am J Primat 12:71–90

    Google Scholar 

  • Cartmill M (1974) Pads and claws in arboreal locomotion. In: Jenkins FA (ed) Primate locomotion. Academic Press, New York, pp 45–83

  • Cartmill M, Milton K (1977) The lorisiform wrist joint and the evolution of "brachiating" adaptations in the Hominoidea. Am J Phys Anthropol 47:249–272

    CAS  PubMed  Google Scholar 

  • Doran DM (1993) Comparative locomotor behavior of chimpanzees and bonobos: the influence of morphology on locomotion. Am J Phys Anthropol 91:83–98

    CAS  PubMed  Google Scholar 

  • Doran DM (1997) Ontogeny of locomotion in mountain gorillas and chimpanzees. J Hum Evol 32:323–344

    Article  CAS  PubMed  Google Scholar 

  • Feibel CS, Brown FH (1991) Age of the primate bearing deposits on Maboko Island, Kenya. J Hum Evol 21:221–225

    Google Scholar 

  • Fleagle JG (1976) Locomotion and posture of the Malayan siamang and implications for hominoid evolution. Folia Primatol 26:245–269

    CAS  PubMed  Google Scholar 

  • Fleagle JG (1983) Locomotor adaptations of Oligocene and Miocene hominoids and their phyletic implications. In: Ciochon RL, Corruccini RS (eds) New interpretations of apes and human ancestry. Plenum, New York, pp 301–324

  • Fleagle JG, Stern JT, Jungers WL, Susman R, Vangor AK, Wells JP (1981) Climbing: a biomechanical link with brachiation and with bipedalism. Symp Zool Soc Lond 48:359–375

    Google Scholar 

  • Gebo DL (1996) Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthropol 101:55–92

    Article  CAS  PubMed  Google Scholar 

  • Gommery D, Senut B, Pickford M (1998) Nouveaux restes postcraniens d'Hominoidea du Miocène inférieur de Napak, Ouganda. Ann Paleontol 84:287–306

    Article  Google Scholar 

  • Grand TI (1972) A mechanical interpretation of terminal branch feeding. J. Mammal 53:198–201

    Google Scholar 

  • Hamrick MW, Meldrum DJ, Simons EL (1995) Anthropoid phalanges from the Oligocene of Egypt. J Hum Evol 28:121–145

    Article  Google Scholar 

  • Harrison T (1982) Small-bodied apes from the Miocene of East Africa. PhD Dissertation, University College of London

  • Harrison T (1989) New postcranial remains of Victoriapithecus from the middle Miocene of Kenya. J Hum Evol 18:3–54

    Google Scholar 

  • Harrison T, Rook L (1997) Enigmatic anthropoid or misunderstood ape? The phylogenetic status of Oreopithecus bambolii reconstructed. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum, New York, pp 327–362

  • Hunt KD (1991) Mechanical implications of chimpanzee positional behavior. Am J Phys Anthropol 86:521–536

    CAS  PubMed  Google Scholar 

  • Hunt KD, Cant JGH, Gebo DL, Rose MD, Walker SE, Youlatos D (1996) Standardized descriptions of primate locomotor and postural models. Primates 37:363–387

    Google Scholar 

  • Hürzeler J (1958) Oreopithecus bambolii Gervais. A preliminary report. Verh Naturforsch Ges Basel 69:1–48

    Google Scholar 

  • Ishida H, Kunimatsu Y, Nakatsukasa M, Nakano Y (1999) New hominoid genus from the middle Miocene of Nachola, Kenya. Anthropol Sci 107:189–191

    Google Scholar 

  • Jungers WL (1987) Body size and morphometric affinities of the appendicular skeleton in Oreopithecus bambolii (IGF11778). J Hum Evol 16:445–456

    Google Scholar 

  • Kelley J, Ward S, Brown B, Hill A, Duren D (2002) Dental remains of Equatorius africanus from Kipsaramon, Tugen Hills, Baringo District, Kenya. J Hum Evol 42:39–62

    Article  PubMed  Google Scholar 

  • Köhler M, Moyà-Solà S, Alba DM (2001) Eurasian hominoid evolution in the light of recent Dryopithecus findings. In: de Bonis L, Koufos GD, Andrews P (eds) Phylogeny of the Neogene hominoid primates of Eurasia. Cambridge University Press, Cambridge, pp 192–230

  • Kunimatsu Y (1997) New species of Nyanzapithecus from Nachola, northern Kenya. Anthropol Sci 105:117–141

    Google Scholar 

  • Langdon JH (1986) Functional morphology of the Miocene hominoid foot. Karger, Basel

  • Larson SG (1998) Parallel evolution in the hominoid trunk and forelimb. Evol Anthropol 6:87–99

    Article  Google Scholar 

  • Leakey M, Walker A (1997) Afropithecus: function and phylogeny. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum, New York, pp 225–239

  • Leakey RE, Leakey MG, Walker AC (1988) Morphology of Afropithecus turkanensis from Kenya. Am J Phys Anthropol 76:289–307

    CAS  PubMed  Google Scholar 

  • MacLatchy L, Gebo D, Kityo R, Pilbeam D (2000) Postcranial functional morphology of Morotopithecus bishopi, with implications for evolution of modern ape locomotion. J Hum Evol 39:159–183

    Article  CAS  PubMed  Google Scholar 

  • Madar S (1996) The postcranial morphology of Sivapithecus, an Asian large-bodied Miocene hominoid. PhD Dissertation, Kent State University, Ohio

  • Madar SI, Rose MD, Kelley J, MacLatchy L, Pilbeam D (2002) New Sivapithecus postcranial specimens from the Siwaliks of Pakistan. J Hum Evol 42:705–752

    Article  PubMed  Google Scholar 

  • McCrossin ML (1994) The phylogenetic relationships, adaptations, and ecology of Kenyapithecus. PhD Dissertation, University of California

  • McCrossin ML, Benefit BR (1997) On the relationships and adaptations of Kenyapithecus, a large-bodied hominoid from the middle Miocene of eastern Africa. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum, New York, pp 241–267

  • McCrossin ML, Benefit BR, Gitau SN, Palmer AK, Blue KT (1998) Fossil evidence for the origins of terrestriality among Old World higher primates. In: Strasser E, Fleagle J, Rosenberger A, McHenry H (eds) Primate locomotion. Plenum, New York, pp 353–396

  • McHenry HM, Corruccini RS (1983) The wrist of Proconsul africanus and the origin of hominoid postcranial adaptations. In: Ciochon RL, Corruccini RS (eds) New interpretations of ape and human ancestry. Plenum, New York, pp 353–366

  • Meldrum DJ, Yuerong P (1988) Manual proximal phalanx of Laccopithecus robustus from the Late Miocene site of Lufeng. J Hum Evol 17:719–731

    Google Scholar 

  • Moyà-Solà S, Köhler M (1996) A Dryopithecus skeleton and the origin of great ape locomotion. Nature 379:156–159

    Article  PubMed  Google Scholar 

  • Nakatsukasa M, Yamanaka A, Kunimatsu Y, Shimizu D, Ishida H (1998) A newly discovered Kenyapithecus skeleton and its implications for the evolution of positional behavior in Miocene East African hominoids. J Hum Evol 34:657–664

    Article  CAS  PubMed  Google Scholar 

  • Nakatsukasa M, Kunimatsu Y, Nakano Y, Ishida H (2000) A new skeleton of the large hominoid from Nachola, northern Kenya. Am J Phys. Anthropol [suppl] 30:235

    Google Scholar 

  • Napier JR, Davis PR (1959) The fore-limb skeleton and associated remains of Proconsul africanus. Fossil Mammal Afr 16:1–69

    Google Scholar 

  • Pickford M, Ishida H, Nakano Y, Yasui K (1987) The Middle Miocene fauna from the Nachola and Aka Aiteputh Formations, Northern Kenya. Afr Stud Monogr [suppl] 5:141–154

  • Pilbeam DR, Young NM (2001) Sivapithecus and hominoid evolution: some brief comments. In: de Bonis L, Koufos GD, Andrews P (eds) Phylogeny of the Neogene hominoid primates of Eurasia. Cambridge University Press, Cambridge, pp 349–364

  • Pilbeam DR, Rose MD, Badgley C, Lipschutz B (1980) Miocene hominoids from Pakistan. Postilla 181:1–94

    Google Scholar 

  • Preuschoft H (1971) Mode of locomotion in subfossil giant lemuroids from Madagascar. Proc Int Congr Primat 3:79–90

    Google Scholar 

  • Preuschoft H (1973) Body posture and locomotion in some East African Miocene Dryopithecinae. In: Day M (ed) Human evolution. Barnes and Noble, New York, pp 13–46

  • Rafferty KL, Walker A, Ruff CB, Rose MD, Andrews PJ (1995) Postcranial estimates of body weight in Proconsul, with a note on a distal tibia of P. major from Napak, Uganda. Am J Phys Anthropol 97:391–402

    CAS  PubMed  Google Scholar 

  • Richmond BG (1998) Ontogeny and biomechanics of phalangeal form in primates. PhD Dissertation, State University of New York

  • Richmond BG (1999) Finite element models of manual proximal phalanges in three modes of locomotion. Am J Phys Anthropol [suppl] 26:188

    Google Scholar 

  • Ripley S (1979) Environmental grain, niche diversification, and positional behavior in Neogene primates: an evolutionary hypothesis. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior, and morphology: dynamic interactions in primates. Fischer, Stuttgart, pp 37–74

  • Rose MD (1983) Miocene hominoid postcranial morphology monkey-like, ape like, neither, or both? In: Chiochon RL, Corruccini RS (eds) New interpretations of ape and human ancestry. Plenum, New York, pp 405–417

  • Rose MD (1986) Further hominoid postcranial specimens from the Late Miocene Nagri Formation of Pakistan. J Hum Evol 15:333–367

    Google Scholar 

  • Rose MD (1993) Locomotor anatomy of Miocene hominoids. In Gebo DL (ed) Postcranial adaptation in nonhuman primates, Northern Illinois University Press, DeKalb, pp 252–272

  • Rose MD (1994) Quadrupedalism in some Miocene catarrhines. J Hum Evol 26:387–411

    Article  Google Scholar 

  • Rose MD (1997) Function and phylogenetic features of the forelimb in Miocene hominoids. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptation. Plenum, New York, pp 79–100

  • Rose MD, Nakano Y, Ishida H (1996) Kenyapithecus postcranial specimens from Nachola, Kenya. Afr Stud Monogr [suppl] 24:3–56

    Google Scholar 

  • Ruff CB (1988) Hindlimb articular surface allometry in hominoidea and Macaca, with comparisons to diaphyseal scaling. J Hum Evol 17:687–714

    Google Scholar 

  • Ruff CB, Walker A, Teaford MF (1989) Body mass, sexual dimorphism and femoral proportions of Proconsul from Rusinga and Mfwangano Island, Kenya. J Hum Evol 18:515–536

    Google Scholar 

  • Sanders WK, Bodenbender BE (1994) Morphometric analysis of lumbar vertebra UMP 67–28: implications for spinal function and phylogeny of the Miocene Moroto hominoid. J Hum Evol 26:203–237

    Article  Google Scholar 

  • Sarmiento EE (1985) Functional differences in the skeleton of wild and captive orang-utans and their adaptive significance. PhD Dissertation, New York University

  • Sarmiento EE (1995) Cautious climbing and folivory: a model of hominoid differentiation. Hum Evol 10:289–321

    Google Scholar 

  • Sherwood RJ, Ward S, Hill A, Duren DL, Brown B, Downs W (2002) Preliminary description of the Equatorius africanus partial skeleton KNM-TH 28860 from Kipsaramon, Tugen Hills, Baringo District, Kenya. J Hum Evol 42:63–73

    Article  PubMed  Google Scholar 

  • Shipman P, Walker A, Van Couvering JA, Hooker PJ, Miller JA (1981) The Fort Ternan hominoid site, Kenya: geology, age, taphonomy and paleoecology. J Hum Evol 10:49–72

    Google Scholar 

  • Smith RJ, Jungers WL (1997) Body mass in comparative primatology. J Hum Evol 32:523–559

    CAS  PubMed  Google Scholar 

  • Spoor CF, Sondaar PY, Hussain ST (1991) A hominoid hamate and first metacarpal from the Late Miocene Nagri Formation of Pakistan. J Hum Evol 21:413–424

    Google Scholar 

  • Stern JT, Susman RL (1981) Electromyography of the gluteal muscle in Hylobates, Pongo, and Pan: implications for the evolution of hominid bipedality. Am J Phys Anthropol 55:153–166

    Google Scholar 

  • Strasser E (1993) Kaswanga Proconsul Foot proportions. Am J Phys Anthropol [suppl] 16:191

    Google Scholar 

  • Strasser E (1994) Relative development of the hallux and pedal digit formulae in Cercopithecidae. J Hum Evol 26:413–440

    Article  Google Scholar 

  • Susman RL (1979) Comparative and functional morphology of hominoid fingers. Am J Phys Anthropol 50:215–236

    CAS  PubMed  Google Scholar 

  • Susman RL, Badrian NL, Badrian AJ (1980) Locomotor behavior of Pan paniscus in Zaire. Am J Phys Anthropol 53:69–80

    Google Scholar 

  • Susman RL, Stern JT, Jungers WL (1984) Arboreality and bipedality in the Hadar hominids. Folia Primatol 43:113–156

    CAS  PubMed  Google Scholar 

  • Tuttle R (1972) Functional and evolutionary biology of hylobatid hands and feet. In: Rumbaugh, DM (ed) Gibbon and siamang. Karger, Basel, pp 136–206

  • Tuttle RH (1975) Parallelism, brachiation, and hominoid phylogeny. In: Luckett WP, Szalay F (eds) Phylogeny of the primates. Plenum, New York, pp 447–480

  • Walker A (1997) Proconsul: Function and Phylogeny. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum, New York, pp 209–224

  • Walker AC, Pickford M (1983) New postcranial fossils of Proconsul africanus and Proconsul nyanzae. In: Ciochon RL, Corruccini RS (eds) New interpretations of ape and human ancestry. Plenum, New York, pp 325–351

  • Ward CV (1993) Torso morphology and locomotion in Proconsul nyanzae. Am J Phys Anthropol 92:291–328

    CAS  PubMed  Google Scholar 

  • Ward CV (1997) Functional anatomy and phyletic implications of the hominoid trunk and hindlimb. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations, Plenum, New York, pp 101–130

  • Ward CV (1998) Afropithecus, Proconsul, and the primitive hominoid skeleton. In Strasser E, Fleagle J, Rosenberger A, McHenry H (eds) Primate locomotion. Plenum, New York, pp 337–352

  • Ward S (1997) The taxonomy and phylogenetic relationships of Sivapithecus revisited. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum, New York, pp 269–290

  • Ward S, Brown B, Hill A, Kelley J, Downs W (1999) Equatorius: a new hominoid genus from the Middle Miocene of Kenya. Science 285:1382–1386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Office of the President of the Republic of Kenya for permission to carry out research in Kenya. Thanks also go to the directors of the National Museum of Kenya for their collaboration on the project. We are grateful to curatorial staff in the National Museums of Kenya, the American Museum of Natural History, the Field Museum of Natural History, and the Powell-Cotton Museum for access to primate skeletal collections, and to Alan Walker for a permission to study KNM-RU 15100. Monte McCrossin generously allowed us to observe recent phalangeal collections from Maboko. Thanks go to Mike Rose for language editing on a draft of this paper, Dan Gebo, Randall Susman, and Masanaru Takai for thoughtful comments on the manuscript and the Editor-in-Chief for accepting the length of this article. This study is supported by the Grant-in-Aid No. 10041164, No. 13375005 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Nakatsukasa.

Appendix

Appendix

Table 13 shows a list of KNM-BG 35250 specimens

Table 13. List of KNM-BG 35250 specimens. KNM-BG 35250Q was mistakenly associated with this skeleton but later excluded (non-primate)

About this article

Cite this article

Nakatsukasa, M., Kunimatsu, Y., Nakano, Y. et al. Comparative and functional anatomy of phalanges in Nacholapithecus kerioi, a Middle Miocene hominoid from northern Kenya. Primates 44, 371–412 (2003). https://doi.org/10.1007/s10329-003-0051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-003-0051-y

Keywords

Navigation