Skip to main content

Advertisement

Log in

Properties, synthesis and toxicity of silver nanoparticles

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Silver nanoparticles are actually used in several industrial sectors and end up in the environment, thus inducing a possible toxicity for living organisms. This article reviews the properties, synthesis and toxicology of silver nanoparticles, with focus on the toxicity for insects such as Bombyx mori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Albright LJ, Wilson EM (1974) Sub-lethal effects of several metallic salts–organic compound combinations upon the heterotrophic microflora of a natural water. Water Res 8:101–105

    Article  CAS  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100

    Article  CAS  Google Scholar 

  • AshaRani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65

    Article  CAS  Google Scholar 

  • AshaRani PV, Sethu S, Vadukumpully S, Zhong S, Lim CT, Hande MP, Valiyaveettil S (2011) Investigation on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20:1233–1242

    Article  Google Scholar 

  • Balamani R, Prince SP, Subburam W, Subburam V (1995) Effect of zinc on the nutritional indices, economic characters of cocoon and quality of silk of Bombyx mori L. Indian J Seric 34:69–71

    Google Scholar 

  • Baumans V (2004) Use of animals in experimental research: an ethical dilemma? Gene Ther 11:S64–S66

    Article  CAS  Google Scholar 

  • Bernal A, Kimbrell DA (2000) Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. Proc Natl Acad Sci USA 97:6019–6024

    Article  CAS  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  Google Scholar 

  • Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165

    Article  CAS  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  CAS  Google Scholar 

  • Brunner T, Piusmanser P, Spohn P, Grass R, Limbach L, Bruinink A, Stark W (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  • Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94(4):320–327

    Article  CAS  Google Scholar 

  • Chakrabarti MK, Medda AK (1978) Effect of cobalt chloride on silkworm (Bombyx mori L.) Nistari race. Sci Cult 44:406–408

    CAS  Google Scholar 

  • Chamundeshwari P, Radhakrishnaih KK (1994) Effect of zinc and nickel on the larval and cocoon characters of silkworms, Bombyx mori L. Sericologia 34:327–330

    Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  Google Scholar 

  • Frattini A, Pellegri N, de Nicastro Dand, Sanctis O (2005) First-principles study of the adsorption of NH3 on Ag surfaces. Mater Chem Phys 94:148–152

    Article  CAS  Google Scholar 

  • Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JC (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328

    Article  CAS  Google Scholar 

  • Gopinath P, Gogoi SK, Sanpui P, Paul A, Chattopadhyay A, Ghosh SS (2010) Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf B Biointerfaces 77:240–245

    Article  CAS  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415

    Article  CAS  Google Scholar 

  • Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Dobrzyńska M, Instanes C, Brunborg G, Gajowik A, Radzikowska J, Wojewódzka M, Kruszewski M (2012) Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett 214(3):251–258

    Article  CAS  Google Scholar 

  • Grosell M, Hogstrand C, Wood CM, Hansen HJM (2000) A nose-to-nose comparison of the physiological effects of exposure to ionic silver versus silver chloride in the European eel (Anguilla anguilla) and the rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 48:327–342

    Article  CAS  Google Scholar 

  • Grzelak K (1995) Control of expression of silk protein genes. Comp Biochem Physiol B Biochem Mol Biol 110:671–681

    Article  CAS  Google Scholar 

  • Hamamoto H, Sekimizu K (2005) Evaluation of the therapeutic effects of antibiotics using silkworm as an animal model. Res Adv Antimicrob Agents Chemother 5:1–23

    Google Scholar 

  • Hiriart-Baer VP, Fortin C, Lee DY, Campbell PG (2006) Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: influence of thiosulphate. Aquat Toxicol 78:136–148

    Article  CAS  Google Scholar 

  • Hogstrand C, Wood CM (1996) The toxicity of silver to marine fish. In: The 4th international conference proceedings: transport, fate and effects of silver in the environment and bacteria

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  Google Scholar 

  • Islam R, Abdul A, Dipak P, Shaheen S, Nilufa B, Islam R (2004) Effect of salt, nickel chloride supplementation on the growth of silkworm Bombyx mori L. J Biol Sci 4:170–172

    Article  Google Scholar 

  • Johny S, Lange CE, Solter LF, Merisko A, Whitman DW (2007) New insect system for testing antibiotics. J Parasitol 93:1505–1511

    Article  CAS  Google Scholar 

  • Kalbassi MR, Johari H, Salari-joo A (2011) Toxicity of silver nanoparticles in aquatic ecosystems: salinity as the main cause in reducing toxicity. Iran J Toxicol 5(1 & 2):436–443

    Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Article  Google Scholar 

  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20

    Article  Google Scholar 

  • Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, Van Eijkeren JC, Geertsma RE, De Jong WH (2010) The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31:8350–8361

    Article  CAS  Google Scholar 

  • Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanopanicles through intact and damaged skin. Toxicology 255:33–37

    Article  CAS  Google Scholar 

  • Lee PC, Meisel D (1982) Adsorption and surface enhanced raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Nancy X-H (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143

    Article  CAS  Google Scholar 

  • Legay JM (1958) Recent advances in silkworm nutrition. Annu Rev Ent 3:75–86

    Article  Google Scholar 

  • Li PW, Kuo TH, Chang JH, Yeh JM, Chan WH (2010) Induction of cyotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol Lett 197:82–87

    Article  CAS  Google Scholar 

  • Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487:92–96

    Article  CAS  Google Scholar 

  • Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96:47–56

    Article  CAS  Google Scholar 

  • Mahmood M, Casciano DA, Mocan T, Iancu C, Xu Y, Mocan L, Iancu DT, Dervishi E, Li Z, Abdalmuhsen M, Biris AR, Ali N, Howard P, Biris AS (2010) Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines. J Appl Toxicol 30:74–83

    Article  CAS  Google Scholar 

  • Mailander V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromol 10:2379–2400

    Article  Google Scholar 

  • Murata T, Kanao-Koshikawa M, Takamatsu T (2007) Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water Air Soil Pollut 164:103–118

    Article  Google Scholar 

  • Naddy RB, Gorsuch JW, Rehner AB, McNerney GR, Bell RA, Kramer JR (2007) Chronic toxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating factors. Aquat Toxicol 84:1–10

    Article  CAS  Google Scholar 

  • Nagy A, Mestl G (1999) High temperature partial oxidation reactions over silver catalysts. Appl Catal A 188:337–353

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Nath BS, Suresh A, Varma BM, Kumar RPS (1997) Changes in protein metabolism in hemolymph and fat body of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Ecotoxicol Environ Saf 36:169–173

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem B 111:3306–3819

    Article  Google Scholar 

  • Orlans FB, Beauchamp TL, Dresser R, Morton DB, Gluck JP (1998) The human use of animals: case studies in ethical choice. Oxford University Press, New York

    Google Scholar 

  • Pandiarajan J, Cathrin BP, Pratheep T, Krishnan M (2011) Defense role of the cocoon in the silk worm Bombyx mori L. Rapid Commun Mass Spectrom 25(21):3203–3206

    Article  CAS  Google Scholar 

  • Pandiarajan J, BalajiS, Mahendran S, Ponmanickam P, Krishnan M (2016a) Synthesis and toxicity of silver nanoparticles. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 3. Springer, Berlin, pp 73–98

  • Pandiarajan J, Jeyarani V, Balaji SM, Krishnan M (2016b) Silver nanoparticles an accumulative Hazard in silk worm: Bombyx mori. Austin J Biotechnol Bioeng 3(1):1057

    Google Scholar 

  • Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the enivornment and human health? J Appl Biomed 6:117–129

    CAS  Google Scholar 

  • Pietrobon B, Kitaev V (2008) Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater 20:5186–5190

    Article  CAS  Google Scholar 

  • Rajathi A, Pandiarajan J, Krishnan M (2010) Effect of RH-2485 on development, metamorphosis and synthesis of major proteins in female silkworm Bombyx mori. Biologia 65:903–913

    Article  CAS  Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  • Roh JY, Park YK, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29(2):167–172

    Article  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  • Saha BN, Khan AR (1995) Effect of nickel chloride supplementation on the growth and development of Bombyx mori. Bull Seric Res 6:91–94

    Google Scholar 

  • Saha B, Khan A (1996) Effect of dietary supplementation of vitamins and minerals on the growth and development of Bombyx mori. Bang J Zool 24:125–131

    Google Scholar 

  • Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nano-particle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413

    Article  CAS  Google Scholar 

  • Sardari RRR, Zarchi SR, Talebi A, Nasri S, Imani S, Khoradmehr A, Sheshde SAR (2012) Toxicological effects of silver nanoparticles in rats. Afr J Microbiol Res 6(27):5587–5593

    CAS  Google Scholar 

  • Sarker A, Haque M, Rab M, Absar N (1995) Effects of feeding mulberry (Morus sp.) leaves supplemented with different nutrients to silkworm (Bombyx mori). Curr Sci 69:185–188

    CAS  Google Scholar 

  • Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Jamie R, Lead JR, Stone V, Feranades TF, Jepeson M, van Aerle R (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115(2):521–534

    Article  CAS  Google Scholar 

  • Shahare B, Yashpal M, Singh G (2013) Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol Mech Methods 23(3):161–167

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1635

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  Google Scholar 

  • Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic optical and sensor application. Chem Phys Chem 1:18–52

    Article  CAS  Google Scholar 

  • Singh T (1990) The effect of oral administration of a juvenoid to the last instar larva of Philosamia ricini Hutt (Lepidoptera: Saturniidae). Indian J Seric 29:59–63

    Google Scholar 

  • Subburathinam KM, Krishnan M (1998) Role of soyabean protein in silkworm nutrition. Indian silk 3:9–10

    Google Scholar 

  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(Suppl. 4):547–551

    Article  CAS  Google Scholar 

  • Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:4924–4932

    Article  CAS  Google Scholar 

  • Tessier PM, Velev OD, Kalambur AT, Rabolt JF, Lenhoff AM, Kaler EW (2000) Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy. J Am Chem Soc 122:9554–9555

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Throback IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S (2007) Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol Lett 270:189–194

    Article  Google Scholar 

  • Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18:1109–1120

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100:160–167

    Article  CAS  Google Scholar 

  • Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30(4):885–892

    Article  CAS  Google Scholar 

  • Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, Chen KP, Wang Y, Yu ML, Yu F, Li JY, Zhong BX (2008) Comparative proteomic analysis between the domesticated silk worm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. J Proteome Res 7:5103–5111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyaraj Pandiarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiarajan, J., Krishnan, M. Properties, synthesis and toxicity of silver nanoparticles. Environ Chem Lett 15, 387–397 (2017). https://doi.org/10.1007/s10311-017-0624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0624-4

Keywords

Navigation