Skip to main content
Log in

Polyurethane for removal of organic dyes from textile wastewater

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Synthetic organic dyes are extensively used in consumer products from textile to pharmaceuticals. A large amount of organic dyes is ultimately discharged as effluent into water bodies, thus posing a serious threat to environment and life. Therefore, removal of dyes from water bodies is needed. To address this problem, various synthetic and natural materials have been used to adsorb dyes. Here, we review the application of polyurethane for removal of organic dyes. First, we review the application of simple and modified polyurethane as efficient and economic adsorbents for dyes. Secondly, we review the polyurethane-based membranes for separation and adsorption of various dyes. Thirdly, we describe polyurethane composites with improved efficiency of dyes removal. Finally, we review the bioremediation of dyes where polyurethane has been proven as an excellent inert support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adebowale KO, Unuabonah EI, Olu-Owolabi BI (2008) Kinetic and thermodynamic aspects of the adsorption of Pb2+ and Cd2+ ions on tripolyphosphate-modified kaolinite clay. J Chem Eng 136:99–107. doi:10.1016/j.cej.2007.03.012

    Article  CAS  Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Pollut 213:251–273. doi:10.1007/s11270-010-0382-4

    Article  CAS  Google Scholar 

  • Amin NK (2008) Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223:152–161. doi:10.1016/j.desal.2007.01.203

    Article  CAS  Google Scholar 

  • Anastasi A, Spina F, Romagnolo A, Tigini V, Prigione V, Varese GC (2012) Integrated fungal biomass and activated sludge treatment for textile wastewaters bioremediation. Bioresour Technol 123:106–111. doi:10.1016/j.biortech.2012.07.026

    Article  CAS  Google Scholar 

  • Argüello L, Hernandez-Martínez AR, Rodríguez A, Molina GA, Esparza R, Est M (2016) Novel chitosan/polyurethane/anatase titania porous hybrid composite for removal of metal ions waste. J Chem Technol Biotechnol 91:2185–2197. doi:10.1002/jctb.4945

    Article  Google Scholar 

  • Baldez EE, Robaina NF, Cassella RJ (2008) Employment of polyurethane foam for the adsorption of methylene blue in aqueous medium. J Hazard Mater 159:580–586. doi:10.1016/j.jhazmat.2008.02.055

    Article  CAS  Google Scholar 

  • Baldez EE, Robaina NF, Cassella RJ (2009) Study of rhodamine B retention by polyurethane foam from aqueous medium in presence of sodium dodecylsulfate. Sep Sci Technol 44:3128–3149. doi:10.1080/01496390903182396

    Article  CAS  Google Scholar 

  • Bilir MH, Sakalar N, Acemioglu B, Baran E, Alma MH (2013) Sorption of remazol brilliant blue R onto polyurethane-type foam prepared from peanut shell. J Appl Polym Sci 127:4340–4351. doi:10.1002/APP.37614

    Article  CAS  Google Scholar 

  • Biswas A, Appell M, Liu Z, Cheng HN (2015) Microwave-assisted synthesis of cyclodextrin polyurethanes. Carbohydr Polym 133:74–79. doi:10.1016/j.carbpol.2015.06.044

    Article  CAS  Google Scholar 

  • Bowen HJM (1970) Absorption by polyurethane foams; new method of separation. J Chem Soc A Inorg Phys Theor. doi:10.1039/J19700001082

  • Cangemi JM, Santos AM, Neto SC, Oshita D (2009) Vegetable-origin foam employed in dye extraction in tanning and leather processing facilities. Polim Cienc Tecnol 19:218–223

    Article  CAS  Google Scholar 

  • Casieri L, Varese GC, Anastasi A, Prigione V, Svobodova K, Fillippelo Marchisloa V, Novotny C (2008) Decolorization and detoxication of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus. Folia Microbiol 53:44–52

    Article  CAS  Google Scholar 

  • Chow A, Werbowesky R (1996) Extraction of azo dyes by polyurethane foam. Talanta 43:263–274

    Article  Google Scholar 

  • Chow A, Branagh W, Chance J (1990) Sorption of organic dyes by polyurethane foam. Talanta 37:407–412

    Article  CAS  Google Scholar 

  • Couto SR (2009) Dye removal by immobilized fungi. Biotechnol Adv 27:227–235. doi:10.1016/j.jhazmat.2012.07.003

    Article  Google Scholar 

  • Ding C, Xu S, Wang J, Liu Y, Hu X, Chen P, Feng S (2012) Controlled loading and release of methylene blue from LbL polyurethane/poly(acrylic acid) film. Polym Adv Technol 23:1283–1286. doi:10.1002/pat.2044

    Article  CAS  Google Scholar 

  • Dolenko SA, Popov VV (2012) Sorption of methylene blue on polyurethane foam and its use for determination of anionic SAS. J Water Chem Technol 34:28–34. doi:10.3103/S1063455X12010055

    Article  Google Scholar 

  • Dong K, Guo X, Xu J, Yang D, Qiu F (2012) Preparation, characterization and dye decolorization application of chitosan/polyurethane foam material. Polym Plast Technol Eng 51:754–759. doi:10.1080/03602559.2012.663044

    Article  CAS  Google Scholar 

  • Dong K, Qiu F, Guo X, Xu J, Yang D, He K (2013a) Adsorption behavior of azo dye eriochrome black t from aqueous solution by β-cyclodextrins/polyurethane foam material. Polym Plast Technol Eng 52:452–460. doi:10.1080/03602559.2012.748805

    Article  CAS  Google Scholar 

  • Dong K, Qiu F, Guo X, Xu J, Yang D, He K (2013b) Polyurethane–attapulgite porous material: preparation, characterization, and application for dye adsorption. J Appl Polym Sci 29:1697–1706. doi:10.1002/APP.38874

    Article  Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971. doi:10.1016/j.envint.2004.02.001

    Article  CAS  Google Scholar 

  • Goes MM, Keller M, Oliveira VM, Villalobos LDG, Moraes JCG, Carvalho GM (2016) Polyurethane foams synthesized from cellulose-based wastes: kinetics studies of dye adsorption. Ind Crops Prod 85:149–158. doi:10.1016/j.indcrop.2016.02.051

    Article  CAS  Google Scholar 

  • Horník M, Šuňovská A, Partelová D, Pipíška M, Augustín J (2013) Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa. Chem Pap 67:254–264. doi:10.2478/s11696-012-0235-2

    Article  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742. doi:10.1016/j.jhazmat.2008.07.020

    Article  CAS  Google Scholar 

  • Kasiri MB, Safapour S (2014) Natural dyes and antimicrobials for green treatment of textiles. Environ Chem Lett 12:1–13. doi:10.1007/s10311-013-0426-2

    Article  CAS  Google Scholar 

  • Khan TA, Nazir M, Khan EA, Riaz U (2015) Multiwalled carbon nanotube–polyurethane (MWCNT/PU) composite adsorbent for safranin T and Pb(II) removal from aqueous solution: batch and fixed-bed studies. J Mol Liq 212:467–479. doi:10.1016/j.molliq.2015.09.036

    Article  CAS  Google Scholar 

  • Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS (2006) Biodegradation of azo dye C.I. Acid Red 88 by an anoxic–aerobic sequential bioreactor. Dyes Pigm 70:1–7. doi:10.1016/j.dyepig.2004.12.021

    Article  CAS  Google Scholar 

  • Kim MC, Lee YW, Kim SJ, Hwang BM, Park HC, Hwang ET, Cao G, Park KW (2014a) Improved lithium ion behavior properties of tio2@graphitic-like carbon core@shell nanostructure. Electrochim Acta 147:241–249. doi:10.1016/j.electacta.2014.09.114

    Article  CAS  Google Scholar 

  • Kim HJ, Pant HR, Kim JH, Choi NJ, Kim CS (2014b) Fabrication of multifunctional TiO2–fly ash/polyurethane nanocomposite membrane via electrospinning. Ceram Int 40:3023–3029. doi:10.1016/j.ceramint.2013.10.005

    Article  CAS  Google Scholar 

  • Kong L, Qiu F, Zhao Z, Zhang X, Zhang T, Pan J, Yang D (2016) Removal of brilliant green from aqueous solutions based on polyurethane foam adsorbent modified with coal. J Clean Prod 137:51–59. doi:10.1016/j.jclepro.2016.07.067

    Article  CAS  Google Scholar 

  • Kumari S, Chauhan GS, Ahn JH (2016) Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem Eng J 304:728–736. doi:10.1016/j.cej.2016.07.008

    Article  CAS  Google Scholar 

  • Lade H, Govindwar S, Paul D (2015) Mineralization and detoxification of the carcinogenic azo dye congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. Int J Environ Res Public Health 12:6894–6918. doi:10.3390/ijerph120606894

    Article  CAS  Google Scholar 

  • Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S (2012) Remediation technologies using cyclodextrins: an overview. Environ Chem Lett 10:225–237. doi:10.1007/s10311-011-0351-1

    Article  CAS  Google Scholar 

  • Lee HC, Jeong YG, Min BG, Lyoo WS, Lee SC (2009) Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams. Fibers Polym 10:636–642. doi:10.1007/s12221-010-0636-1

    Article  CAS  Google Scholar 

  • Leite BT, Robaina NF, Reis LGT, Netto ADP, Cassella RJ (2012) Removal of malachite green from aqueous medium employing polyurethane foam as adsorbent and sodium dodecylsulfate as carrier. Water Air Soil Pollut 223:1303–1313. doi:10.1007/s11270-011-0946-y

    Article  CAS  Google Scholar 

  • Mahesh KPO, Kuo DH, Huang BR, Ujihara M, Imae T (2014) Chemically modified polyurethane-SiO2/TiO2 hybrid composite film and its reusability for photocatalytic degradation of acid black 1 (AB 1) under UV light. Appl Catal A 475:235–241. doi:10.1016/j.apcata.2014.01.044

    Article  CAS  Google Scholar 

  • Malachova K, Rybkova Z, Sezimova H, Cerven J, Novotny C (2013) Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater. Water Res 47:7143–7148. doi:10.1016/j.watres.2013.07.050

    Article  CAS  Google Scholar 

  • Manikandan B, Ramamurthi V, Karthikeyan R, Sundararaman TR (2009) Biobleaching of textile dye effluent using mixed culture through an immobilized packed bed bio reactor (IPBBR). Mod Appl Sci 3:131–135

    Article  CAS  Google Scholar 

  • Moawed EA, Alqarni Y (2013) Determination of azine and triphenyl methane dye in wastewater using polyurethane foam functionalized with tannic acid. Sample Prep 1:18–27. doi:10.2478/sampre-2013-0003

    Google Scholar 

  • Moawed EA, El-Shahat MF (2016) Equilibrium, kinetic and thermodynamic studies of the removal of triphenyl methane dyes from wastewater using iodo polyurethane powder. J Taibah Univ Sci 10:46–55. doi:10.1016/j.jtusci.2015.03.008

    Article  Google Scholar 

  • Moawed EA, Abulkibash AB, El-Shahat MF (2015) Synthesis and characterization of iodo polyurethane foam and its application in removing of aniline blue and crystal violet from laundry wastewater. J Taibah Univ Sci 9:80–88. doi:10.1016/j.jtusci.2014.07.003

    Article  Google Scholar 

  • Mohammadi A, Lakouraj MM, Barikani M (2014) Preparation and characterization of p-tert-butyl thiacalix[4]arene imbedded flexible polyurethane foam: an efficient novel cationic dye adsorbent. React Funct Polym 83:14–23. doi:10.1016/j.reactfunctpolym.2014.07.003

    Article  CAS  Google Scholar 

  • Moreira MT, Palma C, Mielgo I, Feijoo G, Lema JM (2001) In vitro degradation of a polymeric dye (Poly R-478) by manganese peroxidase. Biotechnol Bioeng 75:362–368

    Article  CAS  Google Scholar 

  • Neta JJS, Moreira GC, Silv CJCR, Reis EL (2011) Use of polyurethane foams for the removal of the direct red 80 and reactive blue 21 dyes in aqueous medium. Desalination 281:55–60. doi:10.1016/j.desal.2011.07.041

    Article  Google Scholar 

  • Novotny C, Svobodova K, Benada O, Kofronova O, Heissenberger A, Fuchs W (2011) Potential of combined fungal and bacterial treatment for color removalin textile wastewater. Bioresour Technol 102:879–888. doi:10.1016/j.biortech.2010.09.014

    Article  CAS  Google Scholar 

  • Novotny C, Trošt N, Šušla M, Svobodova K, Mikeskova H, Valkova H, Malachova K, Pavko A (2012) The use of the fungus Dichomitus squalens for degradation in rotating biological contactor conditions. Bioresour Technol 114:241–246. doi:10.1016/j.biortech.2012.03.080

    Article  CAS  Google Scholar 

  • Ozmen EY, Yilmaz M (2007) Use of β-cyclodextrin and starch based polymers for sorption of Congo red from aqueous solutions. J Hazard Mater 148:303–310. doi:10.1016/j.jhazmat.2007.02.042

    Article  CAS  Google Scholar 

  • Ozmen EY, Sezgin M, Yilmaz A, Yilmaz M (2008) Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresour Technol 99:526–531. doi:10.1016/j.biortech.2007.01.023

    Article  CAS  Google Scholar 

  • Pakshirajan K, Kheria S (2012) Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor. J Environ Manage 101:118–123. doi:10.1016/j.jenvman.2012.02.008

    Article  CAS  Google Scholar 

  • Pakshirajan K, Singh S (2010) Decolorization of synthetic wastewater containing azo dyes in a batch-operated rotating biological contactor reactor with the immobilized fungus Phanerochaete chrysosporium. Ind Eng Chem Res 49:7484–7487. doi:10.1021/ie1007079

    Article  CAS  Google Scholar 

  • Pakshirajan K, Sivasankar A, Sahoo NK (2011) Decolourization of synthetic wastewater containing azo dyes by immobilized Phanerochaete chrysosporium in a continuously operated RBC reactor. Appl Microbiol Biotechnol 89:1223–1232. doi:10.1007/s00253-010-2906-7

    Article  CAS  Google Scholar 

  • Pant HR, Kim HJ, Joshi MK, Pant B, Park CH, Kim JI, Hui KS, Kim CS (2014) One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J Hazard Mater 264:25–33. doi:10.1016/j.jhazmat.2013.10.066

    Article  CAS  Google Scholar 

  • Park HO, Oh S, Bade R, Shin WS (2010) Application of A2O moving-bed biofilm reactors for textile dyeing wastewater treatment. Korean J Chem Eng 27:893–899. doi:10.1007/s11814-010-0143-5

    Article  CAS  Google Scholar 

  • Piewnuan C, Wootthikanokkhan J, Ngaotrakanwiwat P, Meeyoo V, Chiarakorn S (2014) Preparation of TiO2/(TiO2–V2O5)/polypyrrole nanocomposites and a study on catalytic activities of the hybrid materials under UV/Visible light and in the dark. Superlattices Microstruct 75:105–117. doi:10.1016/j.spmi.2014.07.026

    Article  CAS  Google Scholar 

  • Prabhavathi P, Rajendran R, Karthiksundara S, Pattabi S, Kumar SD, Santhanam P (2014) Enhanced bioremediation efficiency of denim industrial effluent using bacterial biofilm onto polyurethane matrix (Review). Appl Biochem Microbiol 50:554–562. doi:10.1134/S0003683814060131

    Article  CAS  Google Scholar 

  • Qin J, Qiu F, Rong X, Zhao H, Yang D, Wan J (2014a) Preparation of graphite oxide/polyurethane foam material and its removal application of malachite green from aqueous solution. J Appl Polym Sci 131:40988. doi:10.1002/APP

    Article  Google Scholar 

  • Qin J, Qiu F, Rong X, Yan J, Zhao H, Yang D (2014b) Removal of basic fuchsin dye from aqueous solutions using graphite oxide modified aromatic polyurethane foam material. Toxicol Environ Chem 96:849–860. doi:10.1080/02772248.2014.993642

    Article  CAS  Google Scholar 

  • Qin J, Qiu F, Rong X, Yan J, Zhao H, Yang D (2015) Adsorption behavior of crystal violet from aqueous solutions with chitosan–graphite oxide modified polyurethane as an adsorbent. J Appl Polym Sci 132:41828. doi:10.1002/app.41828

    Google Scholar 

  • Rajendran R, Prabhavathi P, Karthiksundaram S, Pattabi S, Dinesh SK, Santhanam P (2015) Biodecolorization and bioremediation of denim industrial wastewater by adapted bacterial consortium immobilized on inert polyurethane foam (puf) matrix: a first approach with biobarrier Model. Pol J Microbiol 64:339–348

    Article  Google Scholar 

  • Rima J, Assaker K (2013) β-cyclodextrin polyurethanes copolymerised with beetroot fibers (bio-polymer), for the removal of organic and inorganic contaminants from water. J Food Res 2:150–157. doi:10.5539/jfr.v2n1p150

    Article  CAS  Google Scholar 

  • Robaina NF, Soriano S, Cassella RJ (2009) Polyurethane foam loaded with SDS for the adsorption of cationic dyes from aqueous medium: multivariate optimization of the loading process. J Hazard Mater 167:653–659. doi:10.1016/j.jhazmat.2009.01.033

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. doi:10.1016/S0960-8524(00)00080-8

    Article  CAS  Google Scholar 

  • Saba B, Khalid A, Nazir A, Kanwal H, Mahmood T (2013) Reactive black-5 azo dye treatment in suspended and attach growth sequencing batch bioreactor using different co-substrates. Int Biodeterior Biodegrad 85:556–562. doi:10.1016/j.ibiod.2013.05.005

    Article  CAS  Google Scholar 

  • Saleem M, Pirzada T, Qadeer R (2007) Sorption of acid violet 17 and direct red 80 dyes on cotton fiber from aqueous solutions. Colloids Surf A 292:246–250. doi:10.1016/j.colsurfa.2006.06.035

    Article  CAS  Google Scholar 

  • Shan Q, Fengxia D, Shanwen X, Pen L, Xinmin M, Fang M (2015) Degradation of pollutant and antibacterial activity of waterborne polyurethane/doped TiO2 nanoparticle hybrid films. J Wuhan Univ Technol Mater Sci Ed 30:447–451. doi:10.1007/s11595-015-1169-7

    Article  Google Scholar 

  • Shoabargh S, Karimi A, Dehghan G, Khataee A (2014) A hybrid photocatalytic and enzymatic process using glucose oxidase immobilized on TiO2/polyurethane for removal of a dye. J Ind Eng Chem 20:3150–3156. doi:10.1016/j.jiec.2013.11.058

    Article  CAS  Google Scholar 

  • Shoaebargh S, Karimi A, Dehghan G (2014) Performance study of open channel reactor on AO7 decolorization using glucose oxidase/TiO2/polyurethane under UV–Vis LED. J Taiwan Inst Chem Eng 45:1677–1684. doi:10.1016/j.jtice.2013.12.012

    Article  CAS  Google Scholar 

  • Shukla S, Oturan MA (2015) Dye removal using electrochemistry and semiconductor oxide nanotubes. Environ Chem Lett 13:157–172. doi:10.1007/s10311-015-0501-y

    Article  CAS  Google Scholar 

  • Srikanlayanukul M, Khanongnuch C, Lumyong S (2006) Decolorization of textile wastewater by immobilized Coriolus versicolor RC3 in repeated-batch system with the effect of sugar addition. Chiang Mai Univ J Nat Sci 5:301–306

    Google Scholar 

  • Srikanlayanukul M, Kitwechkun W, Watanabe T, Khanongnuch C (2008) Decolorization of orange II by immobilized thermotolerant white rot fungus Coriolus versicolor RC3 in packed-bed bioreactor. Biotechnology 7:280–286

    Article  CAS  Google Scholar 

  • Sultan M, Zia KM, Bhatti HN, Jamil T, Hussain R, Zuber M (2012) Modification of cellulosic fiber with polyurethane acrylate copolymers. Part I: physicochemical properties. Carbohydr Polym 87:397–404. doi:10.1016/j.carbpol.2011.07.070

    Article  CAS  Google Scholar 

  • Sultan M, Islam A, Gul N, Bhatti HN, Safa Y (2015) Structural variation in soft segment of waterborne polyurethane acrylate nanoemulsions. J Appl Polym Sci 132:41706. doi:10.1002/APP

    Google Scholar 

  • Tavčar M, Svobodová K, Kuplenk J, Novotný Č, Pavko A (2006) Biodegradation of azo dye RO16 in different reactors by immobilized Irpex lacteus. Acta Chim Slov 53:338–343

    Google Scholar 

  • Tawfik A, Zaki DF, Zahran MK (2014) Degradation of reactive dyes wastewater supplemented with cationic polymer (Organo Pol.) in a down flow hanging sponge (DHS) system. J Ind Eng Chem 20:2059–2065. doi:10.1016/j.jiec.2013.09.031

    Article  CAS  Google Scholar 

  • Tikhomirova TI, Ramazanova GR, Apyari VV (2014) Sorption of ponceau 4R anionic dye from aqueous solutions on aluminum oxide and polyurethane foam. Russ J Phys Chem A 88:2192–2196. doi:10.1134/S0036024414120371

    Article  CAS  Google Scholar 

  • Unuabonaha E, Olu-Owolab B, Esther F, Adebowale KO (2010) Modeling of fixed-bed column studies for the adsorption of cadmium onto novel polymer–clay composite adsorbent. J Hazard Mater 179:415–423. doi:10.1016/j.jhazmat.2010.03.020

    Article  Google Scholar 

  • Varadarajan G, Venkatachalam P (2016) Sustainable textile dyeing processes. Environ Chem Lett 14:113–122. doi:10.1007/s10311-015-0533-3

    Article  CAS  Google Scholar 

  • Wang R, Xiang T, Zhao WF, Zhao CS (2016) A facile approach toward multi-functional polyurethane/polyethersulfone composite membranes for versatile applications. Mater Sci Eng, C 59:556–564. doi:10.1016/j.msec.2015.10.058

    Article  CAS  Google Scholar 

  • Won SW, Mao J, Sankar G, Lee HC, Yu YS (2016) Adsorptive characteristics of the polyurethane-immobilized Corynebacterium glutamicum biosorbent for removal of Reactive Yellow 2 from aqueous solution. Korean J Chem Eng 33:945–951. doi:10.1007/s11814-015-0251-3

    Article  CAS  Google Scholar 

  • Xu L, Li J, Zhang M (2015) Adsorption characteristics of a novel carbon-nanotube-based composite adsorbent toward organic pollutants. Ind Eng Chem Res 54:2379–2384. doi:10.1021/ie5041379

    Article  CAS  Google Scholar 

  • Yadav M, Yadav HS (2015) Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. Environ Chem Lett 13:309–318. doi:10.1007/s10311-015-0516-4

    Article  CAS  Google Scholar 

  • Yao BJ, Jiang WL, Dong Y, Liu ZX, Dong YB (2016) Post-Synthetic polymerization of UiO-66-NH2 nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation. Chem Eur J 22:10565–10571. doi:10.1002/chem.201600817

    Article  CAS  Google Scholar 

  • Yousef A, Barakat NAM, Amna T, Abdelkareem MA, Unnithan AR, Al-Deyab SS, Kim HY (2012) Activated carbon/silver-doped polyurethane electrospun nanofibers: single mat for different pollutants treatment. Macromol Res 20:1243–1248. doi:10.1007/s13233-012-0183-2

    Article  CAS  Google Scholar 

  • Yu H, Fugetsu B (2010) A novel adsorbent obtained by inserting carbon nanotubes into cavities of diatomite and applications for organic dye elimination from contaminated water. J Hazard Mater 177:138–145. doi:10.1016/j.jhazmat.2009.12.007

    Article  CAS  Google Scholar 

  • Yu G, Wen X, Li R, Qian Y (2006) In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Process Biochem 41:1987–1993. doi:10.1016/j.procbio.2006.04.008

    Article  CAS  Google Scholar 

  • Zavastin D, Cretescu I, Bezdadea M, Bourceanu M, Drăgan M, Lisa G, Mangalagiu I, Vasi′c V, Savi′c J (2010) Preparation, characterization and applicability of cellulose acetate–polyurethane blend membrane in separation techniques. Colloids Surf A 370:120–128. doi:10.1016/j.colsurfa.2010.08.058

    Article  CAS  Google Scholar 

  • Zha F, Li SG, Chang Y, Yan J (2008) Preparation and adsorption kinetics of porous-γ-glycidoxypropyltrimethoxysilane crosslinked chitosan–β-cyclodextrin membranes. J Membr Sci 321:316–323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misbah Sultan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, M. Polyurethane for removal of organic dyes from textile wastewater. Environ Chem Lett 15, 347–366 (2017). https://doi.org/10.1007/s10311-016-0597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-016-0597-8

Keywords

Navigation