Skip to main content
Log in

Glyphosate sorption to soils and sediments predicted by pedotransfer functions

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Glyphosate is the most applied herbicide for weed control in agriculture worldwide. Excessive application of glyphosate induces water pollution. The transfer of glyphosate to freshwater and groundwater is largely controlled by glyphosate sorption to soils and sediments. Sorption coefficients are therefore the most sensitive parameters in models used for risk assessment. However, the variations in glyphosate sorption among soils and sediments are poorly understood. Here we review glyphosate sorption parameters and their variation with selected soils and sediment. We use this knowledge to build pedotransfer functions that allow predicting sorption parameters, Kd, Kf and n, for a wide range of soils and sediments. We gathered glyphosate sorption parameters, 101 Kf, n and equivalent Kd, and associated soil properties. These data were then used to perform stepwise multiple regression analyses to build the pedotransfer functions. The linear (Kd) and Freundlich (Kf, n) pedotransfer functions were benchmarked against experimental data. We found the following major points: (1) Under current environmental conditions, sorption is best predicted by the Kd pedotransfer function. (2) The pedotransfer function is Kd = 7.20*CEC − 1.31*Clay + 24.82 (Kd in L kg−1, CEC in cmol kg−1 and clay in %). (3) Cation exchange capacity (CEC) and clay content are the main drivers of Kd variability across soils and sediments. Freundlich parameters are additionally influenced by pH and organic carbon. This suggests that the formation of complexes between glyphosate phosphonate groups and soil-exchanged polyvalent cations dominates sorption across the range of analyzed soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Accinelli C, Koskinen WC, Seebinger JD, Vicari A, Sadowsky MJ (2005) Effects of incorporated corn residues on glyphosate mineralization and sorption in soil. J Agric Food Chem 53:4110–4117. doi:10.1021/jf050186r

    Article  CAS  Google Scholar 

  • Albers CN, Banta GT, Hansen PE, Jacobsen OS (2009) The influence of organic matter on sorption and fate of glyphosate in soil—comparing different soils and humic substances. Environ Pollut 157:2865–2870. doi:10.1016/j.envpol.2009.04.004

    Article  CAS  Google Scholar 

  • Al-Rajab AJ, Amellal S, Schiavon M (2008) Sorption and leaching of 14C-glyphosate in agricultural soils. Agron Sustain Dev 28:419–428. doi:10.1051/agro:2008014

    Article  CAS  Google Scholar 

  • ANSES (2015) Agritox database. http://www.agritox.anses.fr/

  • Aparicio VC, De Gerónimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93:1866–1873. doi:10.1016/j.chemosphere.2013.06.041

    Article  CAS  Google Scholar 

  • Autio S, Siimes K, Laitinen P, Rämö S, Oinonen S, Eronen L (2004) Adsorption of sugar beet herbicides to finnish soils. Chemosphere 55:215–226. doi:10.1016/j.chemosphere.2003.10.015

    Article  CAS  Google Scholar 

  • Bailly JS, Dages C, Dollinger J, Lagacherie P, Voltz M (2015) Protocole de spatialisation et d’évolution d’états de surface de fossés. French Government Water and Aquatic Bodies Office, 60 p

  • Beltran J, Gerritse RG, Hernandez F (1998) Effect of flow rate on the adsorption and desorption of glyphosate, simazine and atrazine in columns of sandy soils. Eur J Soil Sci 49:149–156. doi:10.1046/j.1365-2389.1998.00132.x

    Article  CAS  Google Scholar 

  • Bergström L, Börjesson E, Stenström J (2011) Laboratory and lysimeter studies of glyphosate and aminomethylphosphonic acid in a sand and a clay soil. J Environ Qual 40:98. doi:10.2134/jeq2010.0179

    Article  Google Scholar 

  • Borggaard OK (2011) Does phosphate affect soil sorption and degradation of glyphosate? A Review. Trends Soil Sci Plant Nutr 2:17–27

  • Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456. doi:10.1002/ps.1512

    Article  CAS  Google Scholar 

  • Candela L, Álvarez-Benedí J, Condesso de Melo MT, Rao PSC (2007) Laboratory studies on glyphosate transport in soils of the Maresme area near Barcelona, Spain: transport model parameter estimation. Geoderma 140:8–16. doi:10.1016/j.geoderma.2007.02.013

    Article  CAS  Google Scholar 

  • Cheah U-B, Kirkwood RC, Lum K-Y (1997) Adsorption, desorption and mobility of four commonly used pesticides in malaysian agricultural soils. Pestic Sci 50:53–63. doi:10.1002/(SICI)1096-9063(199705)50:1<53:AID-PS558>3.0.CO;2-P

    Article  CAS  Google Scholar 

  • Cran R organization (2015) R. http://cran.r-project.org/

  • da Cruz LH, de Santana H, Zaia CTBV, Zaia DAM (2007) Adsorption of glyphosate on clays and soils from Paraná State: effect of pH and competitive adsorption of phosphate. Braz Arch Biol Technol 50:385–394. doi:10.1590/S1516-89132007000300004

    Article  Google Scholar 

  • De Jonge H, Wollesen de Jonge L (1999) Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil. Chemosphere 39:753–763. doi:10.1016/S0045-6535(99)00011-9

    Article  Google Scholar 

  • De Jonge H, de Jonge LW, Jacobsen OH, Yamaguchi T, Moldrup P (2001) Glyphosate sorption in soils of different pH and phosphorus content. Soil Sci 166:230–238. doi:10.1097/00010694-200104000-00002

    Article  Google Scholar 

  • Dideriksen K, Stipp SLS (2003) The adsorption of glyphosate and phosphate to goethite: a molecular-scale atomic force microscopy study. Geochim Cosmochim Acta 67:3313–3327. doi:10.1016/S0016-7037(02)01369-8

    Article  CAS  Google Scholar 

  • Dion HM, Harsh JB, Hill HHJ (2001) Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soils. J Radioanal Nucl Chem 249:385–390. doi:10.1023/A:1013222704311

    Article  CAS  Google Scholar 

  • Dousset S, Jacobson AR, Dessogne J-B, Guichard N, Baveye PC, Andreux F (2007) Facilitated transport of diuron and glyphosate in high copper vineyard soils. Environ Sci Technol 41:8056–8061. doi:10.1021/es071664c

    Article  CAS  Google Scholar 

  • Eberbach PL (1999) Influence of incubation temperature on the behavior of triethylamine-extractable glyphosate (N-phosphonomethylglycine) in four soils. J Agric Food Chem 47:2459–2467. doi:10.1021/jf980785g

    Article  CAS  Google Scholar 

  • FOCUS (2007) Landscape and mitigation factors in aquatic risk assessment. Volume 2: detailed technical reviews. European Commission

  • FOOTPRINT (2015) Footprint PPDB database. http://sitem.herts.ac.uk/aeru/ppdb/en/

  • Funari E, Vighi M (1995) Pesticide risk in groundwater. CRC Press, New York

  • Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108:3–14. doi:10.1016/S0269-7491(99)00197-9

    Article  CAS  Google Scholar 

  • Gimsing AL, Borggaard OK (2002) Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides. Clay Miner 37:509–515. doi:10.1180/0009855023730049

    Article  CAS  Google Scholar 

  • Gimsing AL, Borggaard OK, Bang M (2004) Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur J Soil Sci 55:183–191. doi:10.1046/j.1365-2389.2003.00585.x

    Article  CAS  Google Scholar 

  • Gimsing AL, Szilas C, Borggaard OK (2007) Sorption of glyphosate and phosphate by variable-charge tropical soils from Tanzania. Geoderma 138:127–132. doi:10.1016/j.geoderma.2006.11.001

    Article  CAS  Google Scholar 

  • IUSS W (2014) World reference base for soil resources 2014 (no. 106), World soil resources reports

  • Jacobsen CS, van der Keur P, Iversen BV, Rosenberg P, Barlebo HC, Torp S, Vosgerau H, Juhler RK, Ernstsen V, Rasmussen J, Brinch UC, Jacobsen OH (2008) Variation of MCPA, metribuzine, methyltriazine-amine and glyphosate degradation, sorption, mineralization and leaching in different soil horizons. Environ Pollut 156:794–802. doi:10.1016/j.envpol.2008.06.002

    Article  CAS  Google Scholar 

  • Kogan M, Metz A, Ortega R (2003) Adsorption of glyphosate in chilean soils and its relationship with unoccupied phosphate binding sites. Pesqui Agropecuária Bras 38:513–519. doi:10.1590/S0100-204X2003000400010

    Article  Google Scholar 

  • Lagacherie P, Diot O, Domange N, Gouy V, Floure C, Kao C, Moussa R, Robbez-Masson JM, Szleper V (2006) An indicator approach for describing the spatial variability of artificial stream networks with regard to herbicide pollution in cultivated watersheds. Ecol Indic 6:265–279. doi:10.1016/j.ecolind.2005.02.003

    Article  Google Scholar 

  • Laitinen P, Siimes K, Rämö S, Jauhiainen L, Eronen L, Oinonen S, Hartikainen H (2008) Effects of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate-ammonium. J Environ Qual 37:830. doi:10.2134/jeq2007.0256

    Article  CAS  Google Scholar 

  • Litz NT, Weigert A, Krause B, Heise S, Grützmacher G (2011) Comparative studies on the retardation and reduction of glyphosate during subsurface passage. Water Res 45:3047–3054. doi:10.1016/j.watres.2011.02.015

    Article  CAS  Google Scholar 

  • Mamy L, Barriuso E (2005) Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 61:844–855. doi:10.1016/j.chemosphere.2005.04.051

    Article  CAS  Google Scholar 

  • Mamy L, Barriuso E (2007) Desorption and time-dependent sorption of herbicides in soils. Eur J Soil Sci 58:174–187. doi:10.1111/j.1365-2389.2006.00822.x

    Article  CAS  Google Scholar 

  • Maqueda C, Morillo E, Undabeytia T, Martín F (1998) Sorption of glyphosate and Cu(II) on a natural fulvic aced complex: mutual influence. Chemosphere 37:1063–1072. doi:10.1016/S0045-6535(98)00103-9

    Article  CAS  Google Scholar 

  • Margoum C, Malessard C, Gouy V (2006) Investigation of various physicochemical and environmental parameter influence on pesticide sorption to ditch bed substratum by means of experimental design. Chemosphere 63:1835–1841. doi:10.1016/j.chemosphere.2005.10.032

    Article  CAS  Google Scholar 

  • Mazzei P, Piccolo A (2012) Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy. Environ Sci Technol 46:5939–5946. doi:10.1021/es300265a

    Article  CAS  Google Scholar 

  • Mcconnell J, Hossner L (1985) Ph-dependent adsorption-isotherms of glyphosate. J Agric Food Chem 33:1075–1078. doi:10.1021/jf00066a014

    Article  CAS  Google Scholar 

  • Microsoft Office (2010) Excell 2010

  • Morillo E, Undabeytia T, Maqueda C (1997) Adsorption of glyphosate on the clay mineral montmorillonite: effect of Cu(II) in solution and adsorbed on the mineral. Environ Sci Technol 31:3588–3592. doi:10.1021/es970341l

    Article  CAS  Google Scholar 

  • Morillo E, Undabeytia T, Maqueda C, Ramos A (2000) Glyphosate adsorption on soils of different characteristics: influence of copper addition. Chemosphere 40:103–107. doi:10.1016/S0045-6535(99)00255-6

    Article  CAS  Google Scholar 

  • Nicholls PH, Evans AA (1991) Sorption of ionisable organic compounds by field soils. Part 2: cations, bases and zwitterions. Pestic Sci 33:331–345. doi:10.1002/ps.2780330307

    Article  CAS  Google Scholar 

  • OECD (2000) OECD guidelines for testing of chemicals

  • Ololade IA, Oladoja NA, Oloye FF, Alomaja F, Akerele DD, Iwaye J, Aikpokpodion P (2014) Sorption of glyphosate on soil components: the roles of metal oxides and organic materials. Soil Sediment Contam 23:571–585. doi:10.1080/15320383.2014.846900

    Article  CAS  Google Scholar 

  • Pessagno RC, Torres Sánchez RM, dos Santos Afonso M (2008) Glyphosate behavior at soil and mineral–water interfaces. Environ Pollut 153:53–59. doi:10.1016/j.envpol.2007.12.025

    Article  CAS  Google Scholar 

  • Piccolo A, Celano G, Pietramellara G (1992) Adsorption of the herbicide glyphosate on a metal-humic acid complex. Sci Total Environ Behav Pestic Soil Environ 123–124:77–82. doi:10.1016/0048-9697(92)90134-E

    Article  Google Scholar 

  • Piccolo A, Celano G, Arienzo M, Mirabella A (1994) Adsorption and desorption of glyphosate in some European soils. J Environ Sci Health B 29:1105–1115. doi:10.1080/03601239409372918

    Article  Google Scholar 

  • Piccolo A, Celano G, Conte P (1996) Adsorption of glyphosate by humic substances. J Agric Food Chem 44:2442–2446. doi:10.1021/jf950620x

    Article  CAS  Google Scholar 

  • Prata F, Cardinali VC, do B, Lavorenti A, Tornisielo VL, Regitano JB (2003) Glyphosate sorption and desorption in soils with distinct phosphorus levels. Sci Agric 60:175–180. doi:10.1590/S0103-90162003000100026

  • Rampazzo N, Rampazzo Todorovic G, Mentler A, Blum WEH (2013) Adsorption of glyphosate and aminomethylphosphonic acid in soils. Int Agrophys 27:203–209

    Article  CAS  Google Scholar 

  • Rampoldi EA, Hang S, Barriuso E (2011) The fate of glyphosate in crop residues. Soil Sci Soc Am J 75:553. doi:10.2136/sssaj2010.0105

    Article  CAS  Google Scholar 

  • Singh B, Farenhorst A, Gaultier J, Pennock D, Degenhardt D, McQueen R (2014) Soil characteristics and herbicide sorption coefficients in 140 soil profiles of two irregular undulating to hummocky terrains of western Canada. Geoderma 232–234:107–116. doi:10.1016/j.geoderma.2014.05.003

    Article  Google Scholar 

  • Strange-Hansen R, Holm PE, Jacobsen OS, Jacobsen CS (2004) Sorption, mineralization and mobility of N-(phosphonomethyl)glycine (glyphosate) in five different types of gravel. Pest Manag Sci 60:570–578. doi:10.1002/ps.842

    Article  CAS  Google Scholar 

  • Székacs A, Darvas B (2012) Forty years with glyphosate. Hungarian Academy of Sciences, Hungary

    Book  Google Scholar 

  • Vereecken H (2005) Mobility and leaching of glyphosate: a review. Pest Manag Sci 61:1139–1151. doi:10.1002/ps.1122

    Article  CAS  Google Scholar 

  • Villeneuve A, Larroudé S, Humbert J-F (2011) Herbicide contamination of freshwater ecosystems: impact on microbial communities. InTech open, pp 285–312

  • Wang Y, Zhou D, Sun R (2005) Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils. J Environ Sci 17:711–715

    Google Scholar 

  • Wang Y-J, Zhou D-M, Sun R-J, Cang L, Hao X-Z (2006) Cosorption of zinc and glyphosate on two soils with different characteristics. J Hazard Mater 137:76–82. doi:10.1016/j.jhazmat.2006.02.032

    Article  CAS  Google Scholar 

  • Wauchope RD, Yeh S, Linders JBHJ, Kloskowski R, Tanaka K, Rubin B, Katayama A, Kördel W, Gerstl Z, Lane M, Unsworth JB (2002) Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag Sci 58:419–445. doi:10.1002/ps.489

    Article  CAS  Google Scholar 

  • Weber JB, Wilkerson GG, Reinhardt CF (2004) Calculating pesticide sorption coefficients (Kd) using selected soil properties. Chemosphere 55:157–166. doi:10.1016/j.chemosphere.2003.10.049

    Article  CAS  Google Scholar 

  • Xu D, Meyer S, Gaultier J, Farenhorst A, Pennock D (2009) Land use and riparian effects on prairie wetland sediment properties and herbicide sorption coefficients. J Environ Qual 38:1757. doi:10.2134/jeq2008.0357

    Article  CAS  Google Scholar 

  • Yu Y, Zhou Q-X (2005) Adsorption characteristics of pesticides methamidophos and glyphosate by two soils. Chemosphere 58:811–816. doi:10.1016/j.chemosphere.2004.08.064

    Article  CAS  Google Scholar 

  • Zhou D-M, Wang Y-J, Cang L, Hao X-Z, Luo X-S (2004) Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics. Chemosphere 57:1237–1244. doi:10.1016/j.chemosphere.2004.08.043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in the framework of a research and development project funded by the French Office for Water and Aquatic Bodies (ONEMA). The first author is grateful to the French National Institute for Agricultural Research (INRA) for providing her Ph.D. Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne Dollinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dollinger, J., Dagès, C. & Voltz, M. Glyphosate sorption to soils and sediments predicted by pedotransfer functions. Environ Chem Lett 13, 293–307 (2015). https://doi.org/10.1007/s10311-015-0515-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0515-5

Keywords

Navigation