Skip to main content

Advertisement

Log in

Heavy metals, occurrence and toxicity for plants: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Metal contamination issues are becoming increasingly common in India and elsewhere, with many documented cases of metal toxicity in mining industries, foundries, smelters, coal-burning power plants and agriculture. Heavy metals, such as cadmium, copper, lead, chromium and mercury are major environmental pollutants, particularly in areas with high anthropogenic pressure. Heavy metal accumulation in soils is of concern in agricultural production due to the adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. The influence of plants and their metabolic activities affects the geological and biological redistribution of heavy metals through pollution of the air, water and soil. This article details the range of heavy metals, their occurrence and toxicity for plants. Metal toxicity has high impact and relevance to plants and consequently it affects the ecosystem, where the plants form an integral component. Plants growing in metal-polluted sites exhibit altered metabolism, growth reduction, lower biomass production and metal accumulation. Various physiological and biochemical processes in plants are affected by metals. The contemporary investigations into toxicity and tolerance in metal-stressed plants are prompted by the growing metal pollution in the environment. A few metals, including copper, manganese, cobalt, zinc and chromium are, however, essential to plant metabolism in trace amounts. It is only when metals are present in bioavailable forms and at excessive levels, they have the potential to become toxic to plants. This review focuses mainly on zinc, cadmium, copper, mercury, chromium, lead, arsenic, cobalt, nickel, manganese and iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcantara E, Romera FJ, Canete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  CAS  Google Scholar 

  • Al-Hiyaly SA, McNeilly T, Bradshaw AD (1988) The effect of zinc concentration from electricity pylons-evolution in replicated situation. New Phytol 110:571–580

    Article  CAS  Google Scholar 

  • Alia Prasad KVSK, Pardha Saradhi P (1995) Effect of zinc on free radical and proline in Brasica juncea and Cajanus cajan. Phytochem 39:45–47

    Article  Google Scholar 

  • Allaway WH (1968) Agronomic control over the environmental cycling of trace elements. Adv Agron 20:235–274

    Article  CAS  Google Scholar 

  • Ames BA, Shingenaga MK, Park EM (1991) Oxidative damage and repair: chemical, biological and medical aspects. In: Elmsford (ed) Pergamon Press, New York, pp 181–l87

  • Angino EE, Magnuson LM, Waugh TC, Galle OK, Bredfeldt J (1970) Arsenic in detergents-possible danger and pollution hazard. Sci 168:389–392

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Cur Sci 82:1227–1338

    CAS  Google Scholar 

  • Aust SD, Marehouse CE, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radi Biol Med 1:3–25

    Article  CAS  Google Scholar 

  • Awashthi SK (2000) Prevention of Food Adulteration Act no 37 of 1954. Central and State Rules as Amended for 1999. Ashoka Law House, New Delhi

    Google Scholar 

  • Bachman GR, Miller WB (1995) Iron chelate inducible iron/manganese toxicity in zonal geranium. J Plant Nutri 18:1917–1929

    Article  CAS  Google Scholar 

  • Baker WG (1972) Toxicity levels of mercury lead, copper and zinc in tissue culture systems of cauliflowers lettucepotato and carrot. Can J Bot 50:973–976

    Article  Google Scholar 

  • Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot H, Morel JL, Collins R (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instr Meth B 231:350–356

    Article  CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Func Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Barghiani C, Gloffre D, Bargali R (1987) Mercury content in Pinus Sp of the Mt. Etna volcanic area, in heavymetals in the environment, Vol 2. Lindberg JE, Hutchinson TC (eds). New Orleans.51

  • Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  • Bishnoi NR, Chugh LK, Sawhney SK (1993a) Effect of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L) seedlings. J Plant Physiol 142:25–30

    CAS  Google Scholar 

  • Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993b) Effect of chromium on seed germination, seedling growth and yield of peas. Agri Eco Environ 47:47–57

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremidation of toxic metals-using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Bolter E, Wixson BG, Butherus DL, Jennett JC (1974) Distribution of heavy metals in soils near an active lead smelter. In: Fed kenheuer PJ (ed) Issue confronting Min. Ind. Ann. Meet. Sect. Aime 47th. Department. of Cond. Cont. Ext. University of Minneapolis. Minneapolis, 73

  • Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremed 4:87–100

    Article  CAS  Google Scholar 

  • Bradford WI (1997) Urban storm water pollutant loadings a statistical summary through. JWPCF 49:610–613

    Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110

    Article  CAS  Google Scholar 

  • Cakmak I, Marshner H (1993) Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow NJ (ed) Plant nutrition-from genetic engineering field practice. Kluwer, The Netherlanads, pp 133–137

    Google Scholar 

  • Cannon HL, Connally GG, Epstein JB, Parker JG, Thornton I, Wixson G (1978) Rocks: geological sources of most trace elements. In: report to the workshop at south scas plantation Captiva Island, FL, US. Geochem Environ 3:17–31

    CAS  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores MM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosph 65:999–1106

    Article  CAS  Google Scholar 

  • Chakravarty B, Srivastava S (1992) Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat Res 283:287–294

    Article  CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  Google Scholar 

  • Chatterjee C, Rajeev Gopal, Dube BK (2006) Physiological and biochemical responses of French bean to excess cobalt. J Plant Nutri 29:127–136

    Article  CAS  Google Scholar 

  • Choi JM, Pak CH, Lee CW (1996) Micronutrient toxicity in French marigold. J Plant Nutri 19:901–916

    Article  CAS  Google Scholar 

  • Clarimont KB, Hagar WG, Davis EA (1986) Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiol 80:291–293

    Article  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    Article  CAS  Google Scholar 

  • Climino G, Ziino M (1983) Heavy metal pollution part VII emissions from Etna volcanic. Geophy Res Lett 10:31–38

    Article  Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  • Crawford TW, Stroehlein JL, Kuehl RO (1989) Manganese and rates of growth and mineral accumulation in cucumber. J Am Soc Horti Sci 114:300–306

    CAS  Google Scholar 

  • Cunningham RP (1997) DNA repair: caretakers of the genome? Curr Biol 7:576–579

    Article  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  Google Scholar 

  • Davidson CI, Santhanam S, Fortmann RC, Olson MP (1985) Atmospheric transport and deposition of trace elements onto the Greenland ice sheet. Atmos Envi 19:2065–2082

    Article  CAS  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389–2407

    Article  CAS  Google Scholar 

  • de Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an inter specific rice. J Plant Nutr 28:1–20

    Article  CAS  Google Scholar 

  • De Filippis LF, Ziegler H (1993) Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J Plant Physiol 142:167–172

    Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Desmet GA, de Ruyter GA, Rigoet A (1975) Absorption and metabolism of Cr(VI) by isolated chloroplasts. Phytochem 14:2585–2588

    Article  CAS  Google Scholar 

  • Devries W, Lofts S, Tipping E, Meili M, Groenenberg JE, Schutze G (2002) Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc and mercury in soil and soil solution in view of ecotoxicological effects. Rev Environ Contam Toxicol 191:47–89

    Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Elamin OM, Wilcox GE (1986a) Effect of magnesium and manganese nutrition on muskmelon growth and manganese toxicity. J Am Soc Horti Sci 111:582–587

    CAS  Google Scholar 

  • Elamin OM, Wilcox GE (1986b) Effect of magnesium and manganese nutrition on watermelon growth and manganese toxicity. J Am Soc Horti Sci 111:588–593

    CAS  Google Scholar 

  • Eshleman A, Siegel SM, Siegel BZ (1971) Is mercury from Hawaiian volcanoes a natural source of pollution? Nature 223:471–475

    Article  Google Scholar 

  • European Union (2002) Heavy metals in wastes, European commission on environment http://www.ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf

  • Farlex Incorporated (2005) Definition: environment, the free dictionary, Farlex Inc. Publishing, USA (http://www.thefreedictionary.com/)

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford

    Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological and structural effects of excess copper in plants. Bot Rev 57:247–273

    Article  Google Scholar 

  • Fodor A, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 14:787–792

    Google Scholar 

  • Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutri 21:1723–1730

    Article  CAS  Google Scholar 

  • Foy CD, Weil RR, Coradetti CA (1995) Differential manganese tolerances of cotton genotypes in nutrient solution. J Plant Nutri 18:685–706

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzymes activities, proline and chlorophyll contents in wheat shoots. Biol Planta 50:653–659

    Article  CAS  Google Scholar 

  • Garbarino JR, Hayes H, Roth D, Antweider R, Brinton TI, Taylor H (1995) Contaminants in the Mississippi River, U.S. Geological Survey Circular 1133, Virginia (http://www.pubs.usgs.gov/circ/circ1133/)

  • Gimeno-Garcia E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollu 92:19–25

    Article  CAS  Google Scholar 

  • Goldbold DJ, Hutterman A (1986) The uptake and toxicity of mercury and lead to spruce (Picea abies) seedlings. Wat air Soil Pollu 31:509–515

    Article  Google Scholar 

  • Goldstein S, Czapski C (1986) The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these, systems from the toxicity of O ·−2

    CAS  Google Scholar 

  • Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance in three Tuscan populations of Silene paradoxa. Physiol Planta 113:507–514

    Article  CAS  Google Scholar 

  • Gore A (1997) Respect the land, our precious olant. Time Magaz 150:8–9

    Google Scholar 

  • Gruenhage L, Jager IIJ (1985) Effect of heavy metals on growth and heavy metals content of Allium Porrum and Pisum sativum. Angew Bot 59:11–28

    CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Over expressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  Google Scholar 

  • Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465

    Article  CAS  Google Scholar 

  • Halliwell B, Cutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  Google Scholar 

  • Han FX, Su Y, Monts DL, Waggoner AC, Plodinec JM (2006) Binding distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennesse, USA. Sci Total Env 368:753–768

    Article  CAS  Google Scholar 

  • Hawkes JS (1997) Heavy metals. J Chem Edu 74:1369–1374

    Article  Google Scholar 

  • Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedings under cadmium stress. Plant Sci 160:1085–1093

    Article  CAS  Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyoma H (2000) Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol 64:33–39

    Article  CAS  Google Scholar 

  • Hernandez LE, Carpena-Ruiz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598

    Article  CAS  Google Scholar 

  • Hewilt EJ (1953) Metal inter-relationships in plant nutrition. J Exp Bot 4:59–64

    Article  Google Scholar 

  • Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants. IV. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Sci Plant Nutri 34:65–73

    CAS  Google Scholar 

  • Horst J (1988) Beschreibung der Gleichgewichtslage des ionenaustauschs an schwach saoren harzen mit hilfe eines models der oberflachenkomplexbildung, doctoral thesis, University of Karlsruhe, Kfk report 4464

  • Huang CV, Bazzaz FA, Venderhoef LN (1974) The inhibition of soya bean metabolism by cadmium and lead. Plant Physiol 34:122–124

    Article  Google Scholar 

  • Huffman EWD Jr, Allaway HW (1973a) Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 21:982–986

    Article  Google Scholar 

  • Huffman EWD Jr, Allaway WH (1973b) Growth of plants in solution culture containing low levels of chromium. Plant Physiol 52:72–75

    Article  CAS  Google Scholar 

  • Illan YA, Crapski C, Meisel D (1976) The one-electron transfer redox potentials of free radicals. 1. The oxygen/superoxide system. Biochem Biophys Acta 430:209–224

    Article  Google Scholar 

  • Institute of Environmental Conservation and Research INECAR (2000) Position paper against mining in Rapu-Rapu, Published by INECAR, Ateneo de Naga University, Philippines (http://www.adnu.edu.ph/Institutes/Inecar/pospaper1.asp)

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummonii. Chemosphere 65:591–598

    Article  CAS  Google Scholar 

  • Izosimova A (2005) Modelling the interaction between calcium and nickel in the soil-plant system. FAL Agric Res Special issue 288:99

    Google Scholar 

  • Jain R, Srivastava S, Madan VK, Jain R (2000) Influence of chromium on growth and cell division of sugarcane. Ind J Plant Physiol 5:228–231

    CAS  Google Scholar 

  • Juwarkar AS, Shende GB (1986) Interaction of Cd-Pb effect on growth yield and content of Cd, Pb in barley. Ind J Environ Heal 28:235–243

    CAS  Google Scholar 

  • Kaji T, Suzuki M, Yamamoto C, Mishima A, Sakamoto M, Kozuka H (1995) Severe damage of cultured vascular endothelial cell monolayer after simultaneous exposure to cadmium and lead. Arch Environ Contam Toxicol 28:168–172

    Article  CAS  Google Scholar 

  • Kamal M, Ghalya AE, Mahmouda N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Intern 29:1029–1039

    Article  CAS  Google Scholar 

  • Kasprzak KS (1995) Possible role of oxidative damage in metal-induced carcinogenesis. Cancer Invest 13:411–430

    Article  CAS  Google Scholar 

  • Khan S, Khan NN (1983) Influence of lead and cadmium on growth and nutrient concentration of tomato (Lycopersicum esculentum) and egg plant (Solanum melongena). Plant Soil 74:387–394

    Article  CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997a) Effects of manganese toxicity on photosynthesis of white birch (Betula platyphylla var.japonica) seedlings. Physiol Plant 101:249–256

    Article  CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997b) Effects of manganese in solution culture on the growth of five deciduous broad-leaved tree species with different successional characters from northern Japan. Photosynth 36:31–40

    Article  Google Scholar 

  • Koch I, Wang L, Ollson CA, Cullen WR, Reimer KJ (2000) The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environ Sci Tech 34:22–26

    Article  CAS  Google Scholar 

  • Kraal H, Ernst W (1976) Influence of copp.er high tension lines on plants and soil. Environ Pollu 11:131–135

    Article  CAS  Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102

    Article  CAS  Google Scholar 

  • Kumar G, Singh RP, Sushila (1992) Nitrate assimilation and biomass production in Seasamum indicum (L.) seedlings in lead enriched environment. Wat Soil Pollu 215:124–215

    Google Scholar 

  • Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollu 97:209–221

    CAS  Google Scholar 

  • Le Bot J, Kirkby EA, Beusichem ML (1990) Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutri 13:513–525

    Article  CAS  Google Scholar 

  • Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15:2547–2557

    CAS  Google Scholar 

  • Lee CW, Choi JM, Pak CH (1996) Micronutrient toxicity in seed geranium (Pelargonium × hortorum Baley). J Am Soc Horti Sci 121:77–82

    CAS  Google Scholar 

  • Lenntech Water Treatment and Air Purification (2004) Water treatment. Lenntech, Rotterdamseweg, Netherlands (http://www.excelwater.com/thp/filters/Water-Purification.htm)

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp 70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aqua Toxicol 51:277–291

    Article  CAS  Google Scholar 

  • L’Huillier L, d’Auzac J, Durand M, Michaud-Ferriere N (1996) Nickel effects on two maize (Zea mays) cultivars: growth, structure, Ni concentration, and localization. Can J Bot 74:1547–1554

    Article  Google Scholar 

  • Li Z, McLaren RG, Metherell AK (2004) The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. N Z J Agri Res 47:33–43

    Article  CAS  Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    Article  CAS  Google Scholar 

  • Loneragan JF (1988) Distribution and movement of manganese in plants. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer, Dordrecht, pp 113–124

    Google Scholar 

  • Luna CM, Gonzalez CA (1994) Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Luo Y, Han Z, Chin SM, Linn S (1994) Three chemically distinct types of oxidants formed by iron mediated Fenton reactions in the presence of DNA. Proc Natl Acad Sci USA 91:12438–12442

    Article  CAS  Google Scholar 

  • Mahmood T, Islam KR (2006) Response of rice seedlings to copper toxicity and acidity. J Plant Nutri 29:943–957

    Article  CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London, p 674

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, Toronto

    Google Scholar 

  • Mathys W (1975) Enzymes of heavy metal-resistant and non-resistant populations of Silene cucubalus and their interactions with some heavy metals in vitro and in vivo. Physiol Plant 33:161–165

    Article  CAS  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms-constitutive and adaptive plant-response to elevated metal concentrations in the environment. Plant Cell and Envi 17:989–993

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system; a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Lewis JB, Wataha JC (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mat Res B 75:257–263

    Article  CAS  Google Scholar 

  • Mildvan AS (1970) Metal in enzymes catalysis. In: Boyer DD (ed) The enzymes, vol 11. Academic Press, London, pp 445–536

    Google Scholar 

  • Miller JE, Hassete JJ, Koppe DE (1975) Interaction of lead and cadmium of electron energy transfer reaction in corn mitochondria. Physiol Plant 28:166–171

    Article  Google Scholar 

  • Misra SG, Mani D (1991) Soil pollution. Ashish Publishing House, Punjabi Bagh

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camella sinensis (L.). O Kuntze. Environ Toxicol 22:368–374

    Article  CAS  Google Scholar 

  • Monni S, Salemma M, Millar N (2000) The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut 109:221–229

    Article  CAS  Google Scholar 

  • Moreno-Caselles J, Moral R, Pera-Espinosa A, Marcia MD (2000) Cadmium accumulation and distribution in cucumber plants. J Plant Nutri 23:243–250

    Article  CAS  Google Scholar 

  • Morzck E Jr, Funicclli NA (1982) Effect of lead and on germination of Spartina alterniflora Losiel seeds at various salinities. Environ Exp Bot 22:23–32

    Article  Google Scholar 

  • Mukherji S, Maitra P (1976) Toxic effects of lead growth and metabolism of germinating rice (Oryza sativa L.) seeds mitosis of onion (Allium cepa) root tip cells. Ind J Exp Biol 14:519–521

    CAS  Google Scholar 

  • Nakos G (1979) Lead pollution: fate of lead in soil and its effects on Pinus haplenis. Plant Soil 50:159–161

    Google Scholar 

  • Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedlings growth and biochemical responses in Solanum melongena. Envi Pollu Technol 1:285–290

    CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term heavy metals by a biologically and chemistry significant classification of metal ions. Environ Pollut Series B 1:3–26

    Article  CAS  Google Scholar 

  • Nriagu JO (1988) A silent epidemic of environmental metal poisoning? Environ Pollut 50:139–161

    Article  CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the copperbelt province of Zambia. J Environ 1:66–75

    Google Scholar 

  • Ouzounidou G (1994) Change in chlorophyll fluorescence as a result of copper treatment: dose response relations in Silene and Thlaspi. Photosynthetica. 29:455–462

    Google Scholar 

  • Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu JO, Davidson CI (eds) Toxic metals in the atmosphere, Chap 2. Wiley, New York

    Google Scholar 

  • Paivoke H (1983) The short term effect of zinc on growth anatomy and acid phosphate activity of pea seedlings. Ann Bot 20:307–309

    CAS  Google Scholar 

  • Panda SK, Patra HK (2000) Does chromium (III) produce oxidative stress in excised wheat leaves ? J Plant Biol 27:105–110

    Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidise activity in seedlings of Triticum aestivum L. Plant Cell Environ 15:719–725

    Article  CAS  Google Scholar 

  • Parr PD, Taylor FG Jr (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7:197–202

    Article  CAS  Google Scholar 

  • Peplow D (1999) Environmental impacts of mining in Eastern Washington. Center for Water and Watershed studies fact sheet, University of Washington, Seattle

    Google Scholar 

  • Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. B. Environ Contam Toxicol 66:727–734

    CAS  Google Scholar 

  • Phillips DJH (1990) Arsenic in aquatic organisms: a review of emphasizing chemical speciation. Aqua Toxicol 16:151–186

    Article  CAS  Google Scholar 

  • Porter JR, Cheridan RP (1981) Inhibition of nitrogen fixation in alffa alfa by arsenate, heavy metals, fluoride and simulated acid rain. Plant Physiol 68:143–148

    Article  CAS  Google Scholar 

  • Porter EK, Peterson PJ (1975) Arsenic accumulation by plants on mine waste (United Kingdom). Environ Pollut 4:365–371

    CAS  Google Scholar 

  • Prasad MNV, Hagmeyer J (1999) Heavy metal stress in plants. Springer, Berlin, pp 16–20

    Google Scholar 

  • Prasad KVSK, Pardha saradhi P, Sharmila P (1999) Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10

    Article  CAS  Google Scholar 

  • Prasad MNV, Greger M, Landberg T (2001) Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int J Phytoremed 3:289–300

    Article  CAS  Google Scholar 

  • Pryor WA (1988) Why is the hydroxyl radical the only radical that commonly adds to DNA? hypothesis: it is a rare combination of high electrophilicity, high thermo chemical reactivity, and a mode of production that occurs near DNA. Free Radi Biol Med 4:219–223

    Article  CAS  Google Scholar 

  • Punz WF, Sieghardt H (1993) The response of roots of herbaceous plant species to heavy metals. Environ Exp Bot 33:85–98

    Article  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutri 28:393–404

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyotsnakumari G, Thimmanayak S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphe 60:97–104

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Romero-Puertas MC, Rodriquez-Serrano M, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2–and H2O2 in pea leaves. Plant Cell Env 27:1122–1134

    Article  CAS  Google Scholar 

  • Ros R, Cook DavidT, Picazo CarmenMartinez-CortinaIsabel (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, atpase hydrolytic activity and proton-pumping of rice (Oryza sativa L. cv. Bahia) Shoots. J Exp Bot 43:1475–1481

    Article  CAS  Google Scholar 

  • Roseman IE, Levine RL (1987) Purification of a protease from Ochelichia coli with specificity for oxidized glutamine synthetase. J Biol Chem 262:2101–2110

    CAS  Google Scholar 

  • Ross SM (1994) Toxic metals in soil–plant systems. Wiley, Chichester, p 469

    Google Scholar 

  • Rout GR, Sanghamitra S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L). Chemosphere 40:855–859

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley D, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechn 13:468–474

    Article  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Schmfger MEV (2001) Phytochelatins: complexation of metals and metalloids, studies on the phytochelatin synthase. PhD Thesis, Munich University of Technology (TUM), Munich

  • Scholz RW, Graham KS, Wynn MK (1990) Interaction of glutathione and a-tocopherol in the inhibition of lipid peroxidation of rat liver microsomes. In: Eddy CC, Hamilton GA, Madyastha KM (eds) Biological oxidation systems. Academic Press, San Diego, pp 841–867

    Google Scholar 

  • SCOPE (1974) Saharan Duct. Scientific committee on problems of the environment. Wiley, New York

    Google Scholar 

  • Seaward MRD, Richardson DHS (1990) Atmospheric sources of metal pollution and effects on vegetation. In: Shaw AJ (ed) Heavy metal tolerance in plants evolutionary aspects. CRC Press, Boca Raton, pp 75–94

    Google Scholar 

  • Shah K, Dubey RS (1998) Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol Plant 40:121–130

    Article  Google Scholar 

  • Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 19(209):133–142

    Google Scholar 

  • Shanker AK, Sudhagar R, Pathmanabhan G (2003a) Growth Phytochelatin SH and antioxidative response of Sunflower as affected by chromium speciation. In: 2nd international congress of plant physiology on sustainable plant productivity under changing environment, New Delhi

  • Shanker AK, Djanaguiraman M, Pathmanabhan G, Sudhagar R, Avudainayagam S (2003b) Uptake and phytoaccumulation of chromium by selected tree species. In: Proceedings of the international conference on water and environment held in Bhopal, India

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) The symbiotic solution to arsenic contamination. Nature 404:951–952

    CAS  Google Scholar 

  • Shaw BP, Panigrahi AK (1986) Uptake and tissue distribution of mercury in some plant species collected from a contaminated area in India: its ecological importance. Arch Environ Contam Toxicol 15:439–466

    Article  CAS  Google Scholar 

  • Singh PK, Tewari SK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–117

    CAS  Google Scholar 

  • Sinha SK, Srinivastava HS, Mishra SN (1988a) Nitrate assimilation in intact and excised maize leaves in the presence of lead. Bull Environ Cont Toxi 41:419–422

    Article  CAS  Google Scholar 

  • Sinha SK, Srinivastava HS, Mishra SN (1988b) Effect of lead on nitrate reductase activity and nitrate assimilation in pea leaves. Bot Pollu 57:457–463

    CAS  Google Scholar 

  • Sinha S, Guptha M, Chandra P (1997) Oxidative Stress induced by iron in Hydrilla verticillata (i.f) Royle: response of antioxidants. Ecotoxicol Environ Safe 38:286–291

    Article  CAS  Google Scholar 

  • Smith SR (1996) Agricultural recycling of sewage sludge and the environment. CAB International, Wallingford, UK

    Google Scholar 

  • Somasekharaiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxidase in chlorophyll degradation. Physiol Plant 85:85–89

    Article  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalysed reactions. Annu Rev Biochem 62:797–821

    Article  CAS  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008

    CAS  Google Scholar 

  • Stiborova M, Pitrichova M, Brezinova A (1987) Effect of heavy metal ions in growth and biochemical characteristic of photosynthesis of barley and maize seedlings. Biol Plant 29:453–467

    Article  CAS  Google Scholar 

  • Sudhakar C, Symalabai L, Veeranjaveyuler K (1992) Lead tolerance of certain legume species grown on lead or tailing. Agri Eco Environ 41:253–261

    Article  CAS  Google Scholar 

  • Tang SR, Wilke BM, Brooks RR, Tang SR (2001) Heavy-metal uptake by metal tolerant Elsholtzia haichowensis and Commelina communis from China. Commun Soil Sci Plant Anal 32:895–905

    Article  CAS  Google Scholar 

  • Thomas F, Malick C, Endreszl EC, Davies KS (1998) Distinct responses to copper stress in the halophyte, Mesembryan-themum crystallium. Physiol Plant 102:360–368

    Article  CAS  Google Scholar 

  • United Nations Environmental Protection/Global Program of Action (2004) Why the marine environment needs protection from heavy metals, Heavy Metals 2004, UNEP/GPA Coordination Office (http://www.oceanssalts.org/unatlas/uses/uneptextsph/wastesph/2602gpa)

  • Van Assche F, Clijsters H (1983) Multiple effects of heavy metals on photosynthesis. In: Marcelle R (ed) Effects of stress on photosynthesis. Nijhoff/Junk, The Hague 7, pp 371–382

    Google Scholar 

  • Van Assche F, Clijsters H (1987) Enzymes analysis in plants as a tool for assessing phytotoxicity on heavy metal polluted soils. Med Fac Landouw Rijiksuniv Gent 52:1819–1824

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van Assche F, Cardinaels C, Clijsters H (1988) Induction of enzyme capacity on plants as a result of heavy metal toxicity, dose response relations in Phaseolus vulgaris L. treated with cadmium. Environ Pollut 6:103–115

    Article  Google Scholar 

  • Van den Broeck K, Vandecasteele C, Geuns JMC (1998) Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as a bio-indicator for arsenic contamination. Anal Chim Acta 361:101–111

    Article  Google Scholar 

  • Vazques MD, Ch Poschenrieder, Barcelo J (1987) Chromium (VI) induced structural changes in bush bean plants. Ann Bot 59:427–438

    Google Scholar 

  • Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as bio monitors. In: Markert B (ed) Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York, pp 415–424

    Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Vermette SJ, Bingham VG (1986) Trace elements in Frobisher Bay rain water. Arctic 39:177–179

    Google Scholar 

  • Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual 33:1779–1785

    Article  CAS  Google Scholar 

  • Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792

    Article  Google Scholar 

  • Weckex JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–410

    Google Scholar 

  • WHO/FAO (2007) Joint FAO/WHO food standard programme codex Alimentarius commission 13th session. Report of the thirty-eight session of the codex committee on food hygiene. Houston, ALINORM 07/30/13

  • Winterhalder EK (1963) Differential resistance of two species of Eucalyptus to toxic soil manganese levels. Aust J Sci 25:363–364

    CAS  Google Scholar 

  • Wintz H, Fox T, Vulpe C (2002) Responses of plants to iron, zinc and copper deficiencies. Biochem Soc Trans 30:766–768

    Article  CAS  Google Scholar 

  • Wojcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71–80

    Article  CAS  Google Scholar 

  • Wong JWC (1996) Heavy metal contents in vegetables and market garden soils in Hung Kong. Environ Technol 17:407–414

    Article  CAS  Google Scholar 

  • Wu S (1994) Effect of manganese excess on the soybean plant cultivated under various growth conditions. J Plant Nutri 17:993–1003

    Google Scholar 

  • Yamamoto F, Kozlowski TT (1987) Effect of flooding, tilting of stem, and ethrel application on growth, stem anatomy, and ethylene production of Acer platanoides seedlings. Scand J For Res 2:141–156

    Article  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schratz C (2005) Hyper accumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762

    Article  CAS  Google Scholar 

  • Zanthopolous N, Antoniou V, Nikolaidis E (1999) Copper, zinc, cadmium and lead in sheep geazing in North Greece. Bull Environ Contam Toxicol 62:691–699

    Article  Google Scholar 

  • Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115

    Article  CAS  Google Scholar 

  • Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  Google Scholar 

  • Zingg JM, Jones PA (1997) Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18:869–882

    Article  CAS  Google Scholar 

  • Zornoza P, Robles S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208:221–226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. M. Sreekanth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagajyoti, P.C., Lee, K.D. & Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8, 199–216 (2010). https://doi.org/10.1007/s10311-010-0297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-010-0297-8

Keywords

Navigation