Skip to main content
Log in

Solid phase extraction and preconcentration of cobalt in mineral waters with PAR-loaded Amberlite XAD-7 and flame atomic absorption spectrometry

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

A simple, sensitive, accurate, and selective method for determination of ultratrace levels of Co is modified. The method is based on preconcentration of Co on the PAR-loaded Amberlite XAD-7 at pH 2.0 ± 0.2 for contact time as low as 45 min. The adsorbed cobalt was eluted with concentrated nitric acid and measured by flame atomic absorption spectrometry. Recoveries up to 90% were achieved. The optimized preconcentration method was applied to cobalt determination in natural mineral waters. The detection limit was found to be 0.1 ng mL−1. The relative standard deviation was found to be 13% for 600 mL of 2.0 ng mL−1, for 10 replicate preconcentration procedures. Cobalt concentrations in the studied water samples were found to be in the ranges of 0.5–3.5 ng mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cadore S, Goi RD, Baccan N (2005) Flame atomic absorption determination of cobalt in water after extraction of its morpholinedithiocarbamate complex. J Brazil Chem Soc 16(5):957–962

    CAS  Google Scholar 

  • Camel V (2003) Solid phase extraction of trace elements. Spectrochim Acta A 58:1177–1233

    Google Scholar 

  • Chakrapani G, Murty DSR, Mohanta PL, Rangaswamy R (1998) Sorption of PAR-metal complexes on activated carbon as a rapid preconcentration method for the determination of Cu, Co, Cd, Cr, Ni, Pb and V in ground water. J Geochem Explor 63:145–152. doi:10.1016/S0375-6742(98)00050-8

    Article  CAS  Google Scholar 

  • Chen J, Teo KC (2001) Determination of cobalt and nickel in water samples by flame atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 434:325–330. doi:10.1016/S0003-2670(01)00849-2

    Article  CAS  Google Scholar 

  • Guo Y, Din B, Liu Y et al (2004a) Preconcentration and determination of trace elements with 2-aminoacetylthiophenol functionalized amberlite XAD-2 by inductively coupled plasma-atomic emission spectrometry. Talanta 62:209–215. doi:10.1016/S0039-9140(03)00423-5

    Article  CAS  Google Scholar 

  • Guo Y et al (2004b) Preconcentration of trace metals with 2-(methylthio)aniline-functionalized XAD-2 and their determination by flame atomic absorption spectrometry. Anal Chim Acta 504:319–324. doi:10.1016/j.aca.2003.10.059

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (1991) IARC monographs on the evaluation of carcinogenic risks to humans, vol 52. International Agency for Research on Cancer, Lyon, p 363

    Google Scholar 

  • Jiang Z, Yu JC, Liu H (2005) Simultaneous determination of cobalt, copper and zinc by energy dispersive X-ray fluorescence spectrometry after preconcentration on PAR-loaded ion-exchange resin. Anal Sci 21:851–854. doi:10.2116/analsci.21.851

    Article  CAS  Google Scholar 

  • Lison D, De Boeck M, Verougstraete V et al (2001) Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med 58(10):619–625. doi:10.1136/oem.58.10.619

    Article  CAS  Google Scholar 

  • Narin İ, Soylak M, Elci L, Dogan M (2000) Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column. Talanta 52:1041–1046. doi:10.1016/S0039-9140(00)00468-9

    Article  CAS  Google Scholar 

  • Sawula GM (2004) On-site preconcentration and trace metal ions determination in the Okavango Delta water system, Botswana. Talanta 64:80–86. doi:10.1016/j.talanta.2003.11.048

    Article  CAS  Google Scholar 

  • Soylak M, Narin I, Divrikli U et al (2004) Preconcentration-separation of heavy metal ions in environmental samples by membrane filtration-atomic absorption spectrometry combination. Anal Lett 37(4):767–780. doi:10.1081/AL-120029751

    Article  CAS  Google Scholar 

  • Tanaka T, Ando Y, Saitoh T, Hiraide M (2002) Preconcentration of traces of cobalt, nickel, copper and lead in water by thermoresponsive polymer-mediated extraction for tungten filament electrothermal vaporization-inductively coupled plasma mass spectrometry. J Anal At Spectrom 17:1556–1559. doi:10.1039/b206337a

    Article  CAS  Google Scholar 

  • Tewari PK, Singh AK (2000) Amberlite XAD-7 impregented with Xylenol Orange: a chelating collector for preconcentration of Cd(II), Co(II), Cu(II), Ni(II), Zn(II), and Fe(III) ions prior to their determination by flame AAS. Fresenius J Anal Chem 367:562–567. doi:10.1007/s002160000395

    Article  CAS  Google Scholar 

  • Tuzen M, Soylak M, Elci L (2005) Multi-element pre-concentration of heavy metal ions by solid phase extraction on Chromosorb 108. Anal Chim Acta 548(1–2):101–108. doi:10.1016/j.aca.2005.06.005

    Article  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40. doi:10.1016/j.cbi.2005.12.009

    Article  CAS  Google Scholar 

  • Venkatesh G et al (2005) 2, 3-Dihydroxypyridine loaded amberlite XAD-2 (AXAD-2-DHP): preparation, sorption-desorption equilibria with metal ions, and applications in quantitative metal ion enrichment from water, milk and vitamin samples. Mikrochim Acta 149:213–221. doi:10.1007/s00604-005-0320-0

    CAS  Google Scholar 

  • Yaman M (2003a) Determination of Cr(VI) and Cr(III) in water by using activated carbon-atomic absorption spectrometry. Rev Roum De Chimie 48(8):597–600

    CAS  Google Scholar 

  • Yaman M (2003b) Determination of Cr(VI) and Cr(III) by using activated carbon-atomic absorption spectrometry. J Anal Chem 58(5):456–460. doi:10.1023/A:1024078114423

    Article  CAS  Google Scholar 

  • Yaman M (2006) Comprehensive comparison of trace metal concentrations in cancerous and non-cancerous human tissues. Curr Med Chem 13(21):2513–2525. doi:10.2174/092986706778201620

    Article  CAS  Google Scholar 

  • Yaman M, Gucer S (1995) Determination of cobalt in vegetables by flame atomic absorption spectrometry with activated carbon. Analusis 23:168–171

    CAS  Google Scholar 

  • Yaman M, Kaya G (2005) Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry. Anal Chim Acta 540:77–81. doi:10.1016/j.aca.2004.08.018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Yaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ince, M., Kaya, G. & Yaman, M. Solid phase extraction and preconcentration of cobalt in mineral waters with PAR-loaded Amberlite XAD-7 and flame atomic absorption spectrometry. Environ Chem Lett 8, 283–288 (2010). https://doi.org/10.1007/s10311-009-0218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-009-0218-x

Keywords

Navigation