Skip to main content
Log in

Genetik epileptischer Enzephalopathien

Genetic epileptic encephalopathies

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Epileptische Enzephalopathien sind definiert als Krankheitsverläufe, bei denen die epileptische Aktivität in Form von Anfällen oder EEG-Auffälligkeiten zu zunehmenden Funktionsstörungen des Gehirns führt. Häufig, aber nicht ausschließlich, handelt es sich dabei um früh beginnende und schwer behandelbare Epilepsien. Dazu gehören definierte elektroklinische Syndrome wie z. B. das West-Syndrom oder das Lennox-Gastaut-Syndrom. Im klinischen Alltag ist jedoch eine eindeutige Zuordnung zu den spezifischen Syndromen in vielen Fällen nicht möglich. Diese „nichtklassischen“ epileptischen Enzephalopathien zeigen neben Überschneidungen zu den klassischen Syndromen auch distinkte Charakteristika. Neben strukturellen und metabolischen Ursachen konnten in den letzten Jahren zahlreiche neue Genveränderungen in Zusammenhang mit epileptischen Enzephalopathien nachgewiesen werden. Hierbei wird zunehmend die genetische Heterogenität dieser Erkrankungsgruppe deutlich. Es werden aber auch funktionelle Gemeinsamkeiten der ursächlichen Gene erkennbar. So verursachen verschiedene Gene gleichartige Krankheitsbilder und im Gegenzug können Veränderungen im gleichen Gen sehr unterschiedliche Phänotypen bedingen. Um dieser Tatsache auch im klinischen Alltag gerecht zu werden, bietet insbesondere die Gen-Panel-Diagnostik eine effektive und schnelle diagnostische Methode.

Die Bedeutung der Sicherung der genetischen Diagnose liegt nicht nur in der Ersparnis weiterer, möglicherweise belastender Diagnostik. Sie dient auch der genetischen und prognostischen Beratung und eröffnet zudem zunehmend spezifische Therapieoptionen.

In dieser Übersichtsarbeit werden die wesentlichen epileptischen Enzephalopathien mit entsprechenden genetischen Veränderungen dargestellt.

Abstract

Epileptic encephalopathies are characterized by early seizure onset or EEG abnormalities, leading to increasing brain dysfunction. They often consist of early-onset and pharmacoresistant epilepsies, including well-defined electro-clinical syndromes such as West syndrome or Lennox–Gastaut syndrome. In many cases of clinical routine, assignment to one of these defined syndromes is not possible. These cases of “non-classical” epileptic encephalopathy often show a certain overlap with the classical syndromes, but display additional distinct features. In addition to structural and metabolic causes, over the last few years numerous new genetic mutations have constituted the main etiology of this disease group. Knowledge about the genetic heterogeneity of this disease group has thereby grown exponentially, revealing the functional similarities of the causative genes. Different genes may cause similar conditions and, vice versa, mutations of the same gene may lead to widely differing phenotypes. To deal with this steadily growing complexity in clinical routine, gene panel analysis in particular provides a fast and efficient method.

The establishment of a genetic diagnosis can prevent ongoing, possibly harmful or distressing diagnostic tests, allows genetic and prognostic counseling, and increasingly offers opportunities for targeted treatment.

This review provides an overview of the main epileptic encephalopathies and the corresponding genetic mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Allen AS, Berkovic SF, Cossette P et al (2013) De novo mutations in epileptic encephalopathies. Nature 501:217–221

    Article  CAS  PubMed  Google Scholar 

  2. Arzimanoglou A, French J, Blume WT et al (2009) Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol 8:82–93

    Article  PubMed  Google Scholar 

  3. Beal JC, Cherian K, Moshe SL (2012) Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol 47:317–323

    Article  PubMed  Google Scholar 

  4. Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:676–685

    Article  PubMed  Google Scholar 

  5. Biervert C, Schroeder BC, Kubisch C et al (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406

    Article  CAS  PubMed  Google Scholar 

  6. Carranza Rojo D, Hamiwka L, McMahon JM et al (2011) De novo SCN1A mutations in migrating partial seizures of infancy. Neurology 77:380–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carvill GL, Weckhuysen S, McMahon JM et al (2014) (2014) GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology 82:1245–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carvill GL, McMahon JM, Schneider A et al (2015) Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonic-atonic seizures. Am J Hum Genet 96:808–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coppola G (2013) Malignant migrating partial seizures in infancy. Handb Clin Neurol 111:605–609

    Article  PubMed  Google Scholar 

  10. Depienne C, Bouteiller D, Keren B et al (2009) Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. Plos Genet 5:e1000381

    Article  PubMed  PubMed Central  Google Scholar 

  11. EuroEPINOMICS-RES Consortium, Epilpsy Phenome/Genome Project, Epi4K Consortium (2014) De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet 95:360–370

    Article  Google Scholar 

  12. Guerrini R, Pellock JM (2012) Age-related epileptic encephalopathies. Handb Clin Neurol 107:179–193

    Article  PubMed  Google Scholar 

  13. Harkin LA, Bowser DN, Dibbens LM et al (2002) Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 70:530–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hartmann C, von Spiczak S, Suls A et al (2015) Investigating the genetic basis of fever-associated syndromic epilepsies using copy number variation analysis. Epilepsia 56:e26–e32

    Article  PubMed  PubMed Central  Google Scholar 

  15. Helbig I, Mefford HC, Sharp AJ et al (2009) 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41:160–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalscheuer VM, Tao J, Donnelly A et al (2003) Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am J Hum Genet 72:1401–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kato M, Das S, Petras K et al (2004) Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 2004(23):147–159

    Article  Google Scholar 

  18. Lemke J et al (2015) Die historische Entwicklung genetischer Epilepsiediagnostik. Z Epileptol. doi:10.1007/s10309-015-0031-4

  19. Lemke JR, Riesch E, Scheurenbrand T et al (2012) Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53:1387–1398

    Article  CAS  PubMed  Google Scholar 

  20. Marini C, Scheffer IE, Nabbout R et al (2011) The genetics of Dravet syndrome. Epilepsia 52(Suppl 2):24–29

    Article  CAS  PubMed  Google Scholar 

  21. Mefford HC, Eichler EE (2009) Duplication hotspots, rare genomic disorders, and common disease. Curr Opin Genet Dev 19:196–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mefford HC, Yendle SC, Hsu C et al (2011) Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 70:974–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mikati MA, Jiang YH, Carboni M et al (2015) Quinidine in the treatment of KCNT1 positive epilepsies. Ann Neurol. (Epub ahead of print)

  24. Mills PB, Struys E, Jakobs C et al (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309

    Article  CAS  PubMed  Google Scholar 

  25. Mullen SA, Marini C, Suls A et al (2011) Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch Neurol 68:1152–1155

    Article  PubMed  Google Scholar 

  26. Mullen SA, Carvill GL, Bellows S et al (2013) Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 81:1507–1514

    Article  PubMed  PubMed Central  Google Scholar 

  27. Riikonen R (2014) Recent advances in the pharmacotherapy of infantile spasms. CNS Drugs 28:279–290

    Article  CAS  PubMed  Google Scholar 

  28. Schubert S, Siekierska A, Langlois M et al (2014) Mutations in STX1B encoding a presynaptic protein cause fever-associated epilepsy syndromes. Nat Genet 46:1327–1332

    Article  CAS  PubMed  Google Scholar 

  29. Seidner G, Alvarez MG, Yeh JI et al (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 18:188–191

    Article  CAS  PubMed  Google Scholar 

  30. Shi X, Yasumoto S, Nakagawa E, Fukasawa T, Uchiya S, Hirose S (2009) Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev 31:758–762

    Article  PubMed  Google Scholar 

  31. Strømme P, Mangelsdorf ME, Scheffer IE, Gécz J (2002) Infantile spasms, dystonia, and other X-linked phenotypes caused by mutations in Aristaless related homeobox gene, ARX. Brain Dev 24:266–268

    Article  PubMed  Google Scholar 

  32. Tanaka M, Olsen RW, Medina MT et al (2008) Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 82:1249–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tiwari VN, Sundaram SK, Chugani HT, Huq AHMM (2013) Infantile spasms are associated with abnormal copy number variations. J Child Neurol 28:1191–1196

    Article  PubMed  Google Scholar 

  34. Weckhuysen S, Mandelstam S, Suls A et al (2012) KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71:15–25

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne G. Weber.

Ethics declarations

Interessenkonflikt

S. Wolking, S. von Spiczak und Y. G. Weber geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolking, S., von Spiczak, S. & Weber, Y.G. Genetik epileptischer Enzephalopathien. Z. Epileptol. 29, 70–76 (2016). https://doi.org/10.1007/s10309-015-0034-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-015-0034-1

Schlüsselwörter

Keywords

Navigation