Skip to main content
Log in

Fractionnement et valorisation de l’huile essentielle de la sciure de bois de Tetraclinis articulata (Vahl) Masters du Maroc

The fractionation and evaluation of essential oils from the sawdust of Moroccan Tetraclinis articulata (Vahl) Masters

  • Article Original
  • Pharmacognosie
  • Published:
Phytothérapie

Résumé

Dans le but de contribuer à la valorisation de la flore marocaine en vue d’identifier de nouvelles substances potentiellement intéressantes sur les plans biologique et thérapeutique, nous avons procédé à l’étude des huiles essentielles de la sciure de bois de Tetraclinis articulata (Vahl) Masters originaire de la région de Khemisset (Maroc). L’étude par CPG et CPG/SM de l’huile essentielle de sciure a permis d’identifier 22 constituants dont les cinq majoritaires sont: l’α-acorénol (20,9 %), le cédrol (17,9 %), le totarol (8,8 %), l’α-cédrène (8,7 %) et le β-acorénol (7,4 %). Par la suite, cette essence a été fractionnée sur colonne ouverte de silice en utilisant un éluant de polarité croissante. Ainsi, cinq fractions ont été recueillies. La fraction (FH) éluée avec le pentane est constituée d’hydrocarbures sesquiterpéniques, alors que les quatre fractions oxygénées (FO1 à FO4) éluées avec un mélange diéthyloxyde/pentane de polarité croissante sont dominées par un phénol diterpénique et deux alcools sesquiterpéniques respectivement: le totarol dans la fraction FO1 (42,4 %), l’α-acorénol dans les fractions FO2 (34,9 %) et FO3 (54,0 %), et le cédrol dans la fraction FO4 (58,2 %). L’huile de la sciure et ses fractions chromatographiques ont été testées in vitro contre quatre bactéries: Escherichia coli, Bacillus subtilis, Staphylococcus aureus et Micrococcus luteus et trois champignons: Penicillium parasiticus, Aspergillus niger et Trametes pini. L’huile essentielle brute et les fractions oxygénées, notamment la FO1, constituée essentiellement du totarol, sont les plus actives. La fraction FO1 serait donc recommandée pour optimiser l’activité antimicrobienne de l’huile essentielle de Tetraclinis articulata.

Abstract

With a view to contributing to the evaluation of Moroccan flora through the identification of new potentially interesting substances at a biological and therapeutic level, we have undertaken a study of the essential oils in the sawdust of the Tetraclinis articulata (Vahl) Masters originating from the Khemisset region (Morocco). The study of the sawdust’s essential oil, completed by CPG and CPG/SM, identified 22 components, the main five being: α-acorenol (20.9%), cedrol (17.9%), totarol (8.8%), α-cedrene (8.7%) and β-acorenol (7.4%). This essential oil was fractionated on an open silica column using an eluent of increasing polarity. Five fractions were collected in this way. The fraction (FH) eluted with the pentane comprised sesquiterpene hydrocarbons whereas the four oxygenated fractions (FO1 to FO4) eluted with a diethyl oxide/pentane mix of increasing polarity were dominated by a diterpenoid phenol and two sesquiterpene alcohols respectively: totarol in the FO1 fraction (42.4%), α-acorenol in the FO2 (34.9%) and FO3 (54.0%) fractions, and cedrol in the FO4 fraction (58.2%). The sawdust’s oil and its chromatographic fractions were tested in vitro against four bacterium: Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Micrococcus luteus, and three funghi: Penicillium parasiticus, Aspergillus niger and Trametes pini. The unfractionated essential oil and oxygenated fractions, particularly FO1, comprising mainly of totarol, were the most active. Therefore, the FO1 fraction would be recommended for optimising the antimicrobial activity of the Tetraclinis articulata’s essential oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Adam K, Sivropoulou A, Kokkini S, et al. (1998) Antifungal activities of Origanum vulgaris subsp. Hirtus, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J Agric Food Chem 46: 1739–1745

    Article  CAS  Google Scholar 

  2. Basilico MZ, Basilico JC (1999) Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin a production. Lett Appl Microbiol 29: 238–241

    Article  PubMed  CAS  Google Scholar 

  3. Becerra J, Flores C, Mena J, et al. (2002) Antifungal and antibacterial activity of diterpenes isolated from wood extractables of chilean podocarpaceae. Bol Soc Chil Quím 47: 151–157

    CAS  Google Scholar 

  4. Bourkhiss B, Ouhssine M, Hnach M, et al. (2007) Composition chimique et bioactivité de l’huile essentielle des rameaux de Tetraclinis articulata. Bull Soc Pharm Bordeaux 146: 75–84

    Google Scholar 

  5. Bourkhiss M, Hnach M, Bourkhiss B, et al. (2007) Composition chimique et propriétés antimicrobiennes de l’huile essentielle extraite des feuilles de Tetraclinis articulata (Vahl) du Maroc. Afr Sci 03(2): 232–242

    Google Scholar 

  6. Celimene CC, Micales JA, Ferge L, et al. (1999) Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53: 491–497

    Article  CAS  Google Scholar 

  7. Cosentino S, Tuberoso CIG, Pisano B, et al. (1999) In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29–2: 130–135

    Article  Google Scholar 

  8. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12: 564–582

    PubMed  CAS  Google Scholar 

  9. Cox SD, Mann CM, Markham JL (2001) Interactions between components of the essential oil of Melaleuca alternifolia. J Appl Microbiol 91(3): 492–497

    Article  PubMed  CAS  Google Scholar 

  10. Donoso CA, Becerra J, Bittner M, et al. (2008) Allelochemicals and natural durability in Chilean Cupressaceae heartwoods. Allelopathy J 21(1): 119–132

    Google Scholar 

  11. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88–2: 308–316

    Article  Google Scholar 

  12. El-Ajjouri M, Satrani B, Ghanmi M, et al. (2008) Activité antifongique des huiles essentielles de Thymus bleicherianus Pomel et Thymus capitatus (L.) Hoffm. & Link contre les champignons de pourriture du bois d’oeuvre. Biotechnol Agron Soc Environ 12(4): 345–351

    CAS  Google Scholar 

  13. Farag RS, Daw ZY, Hewedi FM, El-Baroly GSA (1989) Antimicrobial activity of some Egyptian spice essential oils. J Food Prot 52: 665–667

    CAS  Google Scholar 

  14. Farah A, Satrani B, Fechtal M, et al. (2001) Composition chimique et activités antibactérienne et antifongique des huiles essentielles d’Eucalyptus camaldulensis et son hybride naturel (clone 583). Acta Bot Gall 148(3): 183–190

    CAS  Google Scholar 

  15. Fennane M (1987) La grande encyclopédie du Maroc: flore. Présentation du monde végétal, Cremona, Italie, pp. 7–13

    Google Scholar 

  16. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 1(86): 985–990

    Article  Google Scholar 

  17. Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95(4): 853–860

    Article  PubMed  CAS  Google Scholar 

  18. Inouye S, Tsuruoka T, Uchida K, Yamaguchi H (2001) Effect of sealing and tween 80 on the antifungal susceptibility testing of essential oils. Microbiol Immunol 45: 201–208

    PubMed  CAS  Google Scholar 

  19. Ismaiel A, Pierson MD (1990) Inhibition of growth and germination of Clostridium botulinum 33A, 40B, and 1623E by essential oil of spices. J Food Sci 55: 1676–1678

    Article  Google Scholar 

  20. Jaiswal R, Beuria TK, Mohan R, et al. (2007) Totarol inhibits bacterial cytokinesis by perturbing the assembly dynamics of FtsZ. Biochemistry 46(14): 4211–4220

    Article  PubMed  CAS  Google Scholar 

  21. Juven BJ, Kanner J, Schved F, Weisslovicz H (1994) Factors that can interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol 76: 626–631

    Article  PubMed  CAS  Google Scholar 

  22. Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10: 813–818

    Article  PubMed  CAS  Google Scholar 

  23. Knobloch K, Pauli A, Iberl B, et al. (1989) Antibacterial and antifungal properties of essential oil components. J Ess Oil Res 1(3): 119–128

    Article  CAS  Google Scholar 

  24. Knowles JR, Roller S, Murray DB, Naidu AS (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 71: 797–803

    Article  PubMed  CAS  Google Scholar 

  25. Koba K, Sanda K, Raynaud C, et al. (2004) Activités antimicrobiennes d’huiles essentielles de trois Cymbopogon sp. Africains vis-à-vis de germes pathogènes d’animaux de compagnie. Ann Med Vet 148: 202–206

    Google Scholar 

  26. Kubo I, Muroi H, Himejima M (1992) Antibacterial activity of totarol and its potentiation. J Nat Prod 55: 1436–1440

    Article  PubMed  CAS  Google Scholar 

  27. Lopez-Malo A, Alzamora SM, Palou E (2005) Aspergillus flavus growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds. Int J Food Microbiol 99: 119–128

    Article  PubMed  CAS  Google Scholar 

  28. Paster N, Juven BJ, Shaaya E, et al. (1990) Inhibitory effect of oregano and thyme essential oils on moulds and foodborne bacteria. Lett Appl Microbiol 11: 33–37

    Article  Google Scholar 

  29. Pattnaik S, Subramanyam VR, kole CR, et al. (1995) Antibacterial activity of essential oils from Cymbopogon: inter- and intraspecific différences. Microbios 84: 239–245

    PubMed  CAS  Google Scholar 

  30. Remmal A, Tantaoui-Elaraki A, Bouchikhi T, et al. (1993) Improved method for determination of antimicrobial activity of essential oils in agar medium. J Ess Oil Res 5: 1179–1184

    Google Scholar 

  31. Sato K, Sugawara K, Takeuchi H, et al. (2008) Antibacterial novel phenolic diterpenes from Podocarpus macrophyllus D. Don. Chem Pharm Bull 56(12): 1691–1697

    Article  CAS  Google Scholar 

  32. Satrani B, Farah A, Talbi M (2004) Composition chimique et activité antibactériennes et antifongique de l’huile essentielle extraite du bois de Tetraclinis articulata du Maroc. Ann Fals Exp Chim 964: 75–84

    Google Scholar 

  33. Satrani B, Ghanmi M, Farah A, et al. (2007) Composition chimique et activité antimicrobienne de l’huile essentielle de cladanthus mixtus. Bull Soc Pharm Bordeaux 146: 85–96

    Google Scholar 

  34. Sivropoulou A, Kokkini S, Lanaras T, et al. (1995) Antimicrobial activity of mint essential oils. J Agr Food Chem 43: 2384–2388

    Article  CAS  Google Scholar 

  35. Smith ECJ, Kaatz GW, Seo SM, et al. (2007) The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 51(12): 4480–4483

    Article  PubMed  CAS  Google Scholar 

  36. Ultee A, Kets EPW, Smid EJ (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65: 4606–4610

    PubMed  CAS  Google Scholar 

  37. Ziyyat A, Legssyer A, Mekhfi H, et al. (1997) Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol 58(1): 45–54

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bourkhiss.

About this article

Cite this article

Bourkhiss, M., Hnach, M., Lakhlifi, T. et al. Fractionnement et valorisation de l’huile essentielle de la sciure de bois de Tetraclinis articulata (Vahl) Masters du Maroc. Phytothérapie 10, 222–228 (2012). https://doi.org/10.1007/s10298-012-0713-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-012-0713-2

Mots clés

Keywords

Navigation