Skip to main content
Log in

Composition chimique et activité anti-Salmonella enteritidis CECT 4300 des huiles essentielles d’Eucalyptus globulus, de Lavandula angustifolia et de Satureja hortensis. Tests in vitro et efficacité sur les œufs entiers liquides conservés à 7 ± 1 °C

Chemical composition and anti-Salmonella enteritidis CECT 4300 activity of Eucalyptus globulus, Lavandula angustifolia and Satureja hortensis essential oils. Tests in vitro and efficacy in liquid whole eggs stored at 7 ± 1 °C

  • Article Original
  • Pharmacologie-Aromathérapie
  • Published:
Phytothérapie

Résumé

Les huiles essentielles (HE) extraites par entranement à la vapeur de trois plantes aromatiques de la région kabyle en Algérie (Eucalyptus globulus, Lavandula angustifolia et Satureja hortensis) ont été analysées par chromatographie en phase gazeuse couplée à la spectrométrie de masse (CG/SM). Les composants majoritaires des HE sont 1,8-cinéole (81,70 %) pour Eucalyptus globulus; 1,8-cinéole (37,80 %) et β-Caryophyllène (20,90 %) pour Lavandula angustifolia et finalement Carvacrol (46,10 %), p-cymène (12,04 %) et γ-terpinène (11,43 %) pour Satureja hortensis. Pour les tests antibactériens, les méthodes de diffusion sur gélose et celle de microdilution ont été utilisées vis-à-vis de Salmonella enterica sérotype Enteritidis CECT 4300. Les résultats ont révélé une activité antisalmonelle significative exercée par l’ensemble des HE. Des diamètres d’inhibition de 41,30 et 35,26 mm ont été rapportés respectivement pour Lavandula angustifolia et Eucalyptus globulus. Cependant, l’HE de Satureja hortensis a démontré une activité antisalmonelle supérieure par rapport aux deux autres HE (51,15 mm). Les valeurs des concentrations minimales inhibitrices (CMI) rapportées dans cette étude sont comprises entre 1–8 μl/ml. Lavandula angustifolia fut l’HE dont la valeur CMI était la plus basse (1 μl/ml). De plus, l’activité antisalmonelle des HE additionnées à différentes concentrations dans les oeufs entiers liquides a été évaluée. Les résultats ont montré que l’effet antibactérien est proportionnel à la quantité d’HE additionnée au produit. Les résultats obtenus permettent de dire que les HE testées possèdent une activité antisalmonelle et par conséquent constituent une alternative naturelle prometteuse pour être utilisées dans la préservation des oeufs entiers liquides.

Abstract

Essential oils (EO) extracted by steam distillation of three aromatic plants of Kabyle region in Algeria (Eucalyptus globulus, Lavandula angustifolia and Satureja hortensis) were analyzed by gas chromatography coupled with mass spectrometry (GC/MS). The main components of the EOs are 1.8 cineole (81.70 %) for Eucalyptus globulus; 1.8 cineole (37.80%) and β-Caryophyllene (20.90 %) for Lavandula angustifolia and finally Carvacrol (46.10%), p-cymene (12.04%) and γ-terpinene (11.43%) for Satureja hortensis. For antibacterial testing, the agar diffusion and the microdilution methods have been used against Salmonella enterica serovar Enteritidis CECT 4300. The results showed a significant antisalmonelle activity exerted by all HEs. The diameters inhibition of 41.30 and 35.26 mm were reported respectively for Lavandula angustifolia and Eucalyptus globulus. However, the Satureja hortensis EO demonstrated an antisalmonelle activity superior to the other EO (51.15 mm). The values of minimum inhibitory concentrations (MIC) reported in this study were between 1–8 μl/ml. Lavandula angustifolia was the EO whose MIC value was the lowest (1 μl/ml). In addition, the activity antisalmonelle of the EO added at different concentrations in liquid whole egg was also evaluated. The results showed that the antibacterial effect is proportional to the amount of EO added to the product. The antisalmonelle activity and therefore constitute a promising natural alternative for use in the preservation of liquid whole egg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Adams RP (2001) Identification of essential oil components by gaz chromatography: quadrupole mass spectroscopy. Allured Pub. Corp: Carol Stream, 456 p

  2. Angioni A, Barra A, Coroneo V, et al. (2006) Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J Agric Food Chem 54: 4364–4370

    Article  PubMed  CAS  Google Scholar 

  3. Bagamboula CF, Uyttendaele M, Debevere J (2004) Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and Shigella flexneri. Food Microb 21: 33–42

    Article  CAS  Google Scholar 

  4. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils: a review. Food Chem Toxicol 46: 446–475

    Article  PubMed  CAS  Google Scholar 

  5. Botelho MA, Nogueira NA, Bastos GM, et al. (2007) Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz J Med Biol Res 40: 349–356

    Article  PubMed  CAS  Google Scholar 

  6. Ciani M, Menghini L, Mariani F, et al. (2000) Antimicrobial properties of essential oil of Satureja montana L. on pathogenic and spoilage yeasts. Biotechnol Lett 22(12): 1007–1010

    Article  CAS  Google Scholar 

  7. Cimanga K, Kambu K, Tona L, et al. (2002) Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol 79: 213–220

    Article  PubMed  CAS  Google Scholar 

  8. Cristani M, D’arrigo M, Mandalari G, et al.(2007) Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J Agric Food Chem 55: 6300–6308

    Article  PubMed  CAS  Google Scholar 

  9. De-Oliveira AC, Ribeiro-Pinto LF, Paumgartten FJR (1997) In vitro inhibition of CYP2B1 mono-oxygenase by b-myrcene and other monoterpenoid compounds. Toxicol Lett 92: 39–46

    Article  PubMed  CAS  Google Scholar 

  10. Djenane D, Yangüela J, Amrouche T, et al. (2009) Chemical composition of some essential oils and antibacterial activity in minced beef stored at 4 °C. 55th International Congress of Meat Science and Technology. August 16–21, 2009 Copenhagen, Denmark

  11. Djenane D, Yangüela J, Amrouche T, et al. (2011) Chemical composition and antimicrobial effects of essential oils of Eucalyptus globulus, Myrtus communis and Satureja hortensis against Escherichia coli O157:H7 and Staphylococcus aureus in Minced Beef. Food Science and Technology International DOI: 10.1177/1082013211398803

  12. Djenane D, Yangüela J, Montañés L, et al. (2011) Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media; efficacy and synergistic potential in minced beef. Food Control 22: 1046–1053

    Article  CAS  Google Scholar 

  13. Dob T, Dahmane D, Tayeb B, Chelghoum C (2005) Chemical composition of the essential oil of Lavandula dentata L. from Algeria. Int J Aromatherapy 15: 110–114

    Article  CAS  Google Scholar 

  14. European Commission (2003) Opinion of the Scientific Committee on Veterinary Measures relating to public health on salmonellae in foodstuffs. Off J Eur Union L 325 of 12.12.2003: 1–15

  15. Gardeli C, Papageorgiou V, Mallouchos A, et al. (2008) Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: evaluation of antioxidant capacity of methanolic extracts. Food Chem 107: 1120–1130

    Article  CAS  Google Scholar 

  16. Güllüce M, Sökmen M, Daferera D, et al. (2003) In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J Agric Food Chem 51: 3958–3965

    Article  PubMed  Google Scholar 

  17. Guard-Peter J (2001) The chicken, the egg and Salmonella enteritidis. Environ Microbiol 3: 421–430

    Article  Google Scholar 

  18. Gutierrez J, Barry-Ryan C, Bourke P (2008) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol 124: 91–97

    Article  PubMed  CAS  Google Scholar 

  19. Gutierrez J, Barry-Ryan C, Bourke P (2009) Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components. Food Microbiol 26: 142–150

    Article  PubMed  CAS  Google Scholar 

  20. Hadian J, Ebrahimi SN, Salehi P (2010) Variability of morphological and phytochemical characteristics among Satureja hortensis L. accessions of Iran. Ind Crops Prod 32: 62–69

    Article  CAS  Google Scholar 

  21. Hajhashemi V, Ghannadi A, Badie Sharif B (2003) Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol 89: 67–71

    Article  PubMed  Google Scholar 

  22. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86: 985–990

    Article  PubMed  CAS  Google Scholar 

  23. Hanamanthagouda MS, Kakkalameli SB, Naik PM, et al. (2010) Essential oils of Lavandula bipinnata and their antimicrobial activities. Food Chem 118: 836–839

    Article  CAS  Google Scholar 

  24. Hassiotisa CN, Tarantilis PA, Dafererab D, Polissiou MG (2010) Etherio, a new variety of Lavandula angustifolia with improved essential oil production and composition from natural selected genotypes growing in Greece. Ind Crops Prod 32: 77–82

    Article  Google Scholar 

  25. Hazzit M, Baaliouamer A, Veríssimo AR, et al. (2009) Chemical composition and biological activities of Algerian Thymus oils. Food Chem 116: 714–721

    Article  CAS  Google Scholar 

  26. Holley RA, Patel D (2005) Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol 22: 273–292

    Article  CAS  Google Scholar 

  27. Karatzas AK, Kets EPW, Smid EJ, Bennik MHJ (2001) The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. J Appl Microbiol 90: 463–469

    Article  PubMed  CAS  Google Scholar 

  28. Kim J, Marshall MR, Wei C (1995) Antibacterial activity of some essential oil components against five foodborne pathogens. J Agric Food Chem 43: 2839–2845

    Article  CAS  Google Scholar 

  29. Lis-Balchhin M, Deans SG (1997) Bioactivity of selected plant essential oils against Listeria monocytogenes. J Appl Microbiol 82: 759–762

    Article  Google Scholar 

  30. Longaray-Delamare AP, Moschen-pistorello IT, Artico L, et al. (2007) Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem 100: 603–708

    Article  CAS  Google Scholar 

  31. Maciel MV, Morais SM, Bevilaqua CML, et al. (2010) Chemical composition of Eucalyptus spp. Essential oils and their insecticidal effects on Lutzomyia longipalpis. Vet Parasitol 167: 1–7

    Article  PubMed  CAS  Google Scholar 

  32. Masotti V, Juteau F, Bessière JM, Viano J (2003) Seasonal and phenological variations of the essential oil from the narrow endemic species Artemisia molinieri and its biological activities. J Agric Food Chem 51: 7115–7121

    Article  PubMed  CAS  Google Scholar 

  33. Mejlholm O, Dalgaard P (2002) Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products. Lett Appl Microbiol 34: 27–31

    Article  PubMed  CAS  Google Scholar 

  34. Monfort S, Gayán E, Saldaña G, et al. (2010) Inactivation of Salmonella typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innovat Food Sci Emerg Tech 11: 306–313

    Article  CAS  Google Scholar 

  35. Oussalah M, Caillet S, Saucier L, Lacroix M (2007) Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: Escherichia coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18: 414–420

    Article  CAS  Google Scholar 

  36. Özcan M, Boyraz N (2000) Antifungal properties of some herb decoctions. Eur Food Res Technol 212(1): 86–88

    Article  Google Scholar 

  37. Özcan M, Erkmen O (2001) Antimicrobial activity of essential oils of Turkish plant spices. Eur Food Res Technol 212: 658–660

    Article  Google Scholar 

  38. Ponce AG, Fritz R, Del Valle C, Roura SI (2003) Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. Lebensmittel Wissenschaft und-Technology 36: 679–684

    Article  CAS  Google Scholar 

  39. Rasooli I, Bagher Rezaei M, Allameh A (2006) Ultrastructural studies on antimicrobial efficacy of thyme essential oils on Listeria monocytogenes. Int J Infect Dis 10: 236–241

    Article  PubMed  Google Scholar 

  40. Roller S, Seedhar P (2002) Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4 °C and 8 °C. Lett Appl Microbiol 35: 390–394

    Article  PubMed  CAS  Google Scholar 

  41. Sahraoui N, Vian MA, Bornard I, et al. (2008) Improved microwave steam distillation apparatus for isolation of essential oils: comparison with conventional steam distillation. J Chromatogr A 1210: 229–233

    Article  PubMed  CAS  Google Scholar 

  42. Sefidkon F, Abbasi K, Khaniki GB (2006) Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem 99: 19–23

    Article  CAS  Google Scholar 

  43. Silvestre AJD, Cavaleiro JAS, Delmond B, et al. (1997) Analysis of the variation of the essential oil composition of Eucalyptus globulus Labill. from Portugal using multivariate statistical analysis. Ind Crops Prod 6(1): 27–33

    Article  CAS  Google Scholar 

  44. Smith-Palmer A, Stewart J, Fyfe L (2001) The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiol 18: 463–470

    Article  CAS  Google Scholar 

  45. Sonboli A, Eftekhar F, Yousefzadi M, Kanani MR (2005) Antibacterial activity and chemical composition of the essential oil of Grammosciadium platycarpum Boiss. from Iran. Zeit für Naturfor 60: 30–34

    CAS  Google Scholar 

  46. Sonboli A, Babakhani B, Mehrabian AR (2006) Antimicrobial activity of six constituents of essential oil from Salvia. Zeit für Naturfor 61: 160–164

    CAS  Google Scholar 

  47. SPSS (1995) SPSS for Windows, 6.1.2. SPSS Inc., Chicago, IL

    Google Scholar 

  48. Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21: 1199–1218

    Article  CAS  Google Scholar 

  49. Tsigarida E, Skandamis P, Nychas GJE (2000) Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5 °C. J Appl Microbiol 89: 901–909

    Article  PubMed  CAS  Google Scholar 

  50. Ultee A, Bennik MHJ, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the foodborne pathogen Bacillus cereus. Appl Environ Microbiol 68(4): 1561–1568

    Article  PubMed  CAS  Google Scholar 

  51. Vagionas K, Graikou K, Ngassapa O, et al. (2007) Composition and antimicrobial activity of the essential oils of three Satureja species growing in Tanzania. Food Chem 103: 319–324

    Article  CAS  Google Scholar 

  52. Vilela GR, De Almeida GS, Regitano D’arce MAB, et al.(2009) Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. J Stored Products Res 45: 108–111

    Article  CAS  Google Scholar 

  53. Wendakoon CN, Sakaguchi M (1995) Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J Food Prot 58: 280–283

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Djenane.

About this article

Cite this article

Djenane, D., Lefsih, K., Yangüela, J. et al. Composition chimique et activité anti-Salmonella enteritidis CECT 4300 des huiles essentielles d’Eucalyptus globulus, de Lavandula angustifolia et de Satureja hortensis. Tests in vitro et efficacité sur les œufs entiers liquides conservés à 7 ± 1 °C. Phytothérapie 9, 343–353 (2011). https://doi.org/10.1007/s10298-011-0664-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-011-0664-z

Mots clés

Keywords

Navigation