Skip to main content
Log in

Theoretical analysis of unambiguous 2-D tracking loop performance for band-limited BOC signals

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Code-tracking accuracy, an important attribute of receiver performance assessment, depends both on characteristics of the ranging signal being tracked and on the structure of the tracking channel. The implementation of binary offset carrier (BOC) modulated signals and the development of new tracking channel structures with a two-dimensional (2-D) loop architecture, in which both the code and subcarrier delays are estimated independently by two separate tracking loops, have resulted in the theories of 2-D loop tracking performance being of increased interest. However, the theories of tracking performance in white noise for band-limited BOC signals using the most representative and most mature 2-D tracking method are still not mature. Therefore, we present the exact expression for tracking performance prediction for limited front-end bandwidths to show how well double estimator technique (DET) could perform for given conditions. While evaluation of the exact expression requires numerical integration, a simple yet accurate closed-form analytical approximation is also provided for a more intuitive description of tracking performance. Moreover, we present a bandwidth-dependent, quasi-optimal, discriminator parameter selection rule to simplify the work of receiver designers while improving tracking performance. These results can provide further guidance for the design, parameters selection, and optimization of the receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anantharamu PB, Borio D, Lachapelle G (2009) Pre-filtering, side-peak rejection and mapping: several solutions for unambiguous BOC Tracking. In: Proceedings ION GNSS 2009, Savannah, Georgia, USA, 22–25 September, pp 3142–3155

  • Betz JW (1999) The Offset carrier modulation for GPS modernization. In: Proceedings ION NTM 1999, San Diego, California, USA, 25–27 January, pp 639–648

  • Betz JW (2001) Binary offset carrier modulations for radionavigation. Navig J Inst Navig 48(4):227–246

    Article  Google Scholar 

  • Betz JW, Kolodziejski KR (2000) Extended theory of early-late code tracking for a bandlimited GPS receiver. Navig J Inst Navig 47(3):211–226

    Article  Google Scholar 

  • Betz JW, Kolodziejski KR (2009a) Generalized theory of code tracking with an early-late discriminator part I: lower bound and coherent processing. IEEE Trans Aerosp Electron Syst 45(4):1538–1550

    Article  Google Scholar 

  • Betz JW, Kolodziejski KR (2009b) Generalized theory of code tracking with an early-late discriminator part II: noncoherent processing and numerical results. IEEE Trans Aerosp Electron Syst 45(4):1551–1564

    Google Scholar 

  • Borio D (2014a) Double phase estimator: new results. Satellite navigation technologies and European workshop on GNSS signals and signal processing (NAVITEC) 2014 7th ESA workshop on, Noordwijk, Netherlands, 3–5 December, pp 1–6

  • Borio D (2014b) Double phase estimator: new unambiguous binary offset carrier tracking algorithm. IET Radar Sonar Navig 8(7):729–741

    Article  Google Scholar 

  • Fine P, Wilson W (1999) Tracking algorithm for GPS offset carrier signals. In: Proceedings ION NTM 1999, San Diego, California, USA, 25–27 January, pp 671–676

  • Hodgart MS, Simons E (2012) Improvements and additions to the double estimation technique. Satellite navigation technologies and European workshop on GNSS signals and signal processing (NAVITEC) 2012 6th ESA workshop on, Noordwijk, Netherlands, 5–7 December, pp 1–7

  • Hodgart MS, Blunt P, Unwin M (2007) The optimal dual estimate solution for robust tracking of binary offset carrier (BOC) modulation. In: Proceedings ION GNSS 2007, Fort Worth, Texas, USA, 25–28 September, pp 1017–1027

  • Julien O, Macabiau C, Bertrand E (2010) Analysis of Galileo E1 OS unbiased BOC/CBOC tracking techniques for mass market applications. Satellite navigation technologies and European workshop on GNSS signals and signal processing (NAVITEC) 2010 5th ESA workshop on, Noordwijk, Netherlands, 8–10 December, pp 1–8

  • Kao TL, Juang JC (2012) Weighted discriminators for GNSS BOC signal tracking. GPS Solut 16(3):339–351

    Article  Google Scholar 

  • Kaplan ED, Hegarty C (2005) Understanding GPS: principles and applications. Artech House, Norwood

    Google Scholar 

  • Mongredien C, Rügamer A, Overbeck M, Rohmer G, Berglez P, Wasle E (2011) Opportunities and challenges for multi-constellation, multi-frequency automotive GNSS receivers. In: Heuberger A (ed) Microelectronic systems. Springer, Berlin, pp 159–172

    Chapter  Google Scholar 

  • Rebeyrol E, Julien O, Macabiau C, Ries L, Delatour A, Lestarquit L (2007) Galileo civil signal modulations. GPS Solut 11(3):159–171

    Article  Google Scholar 

  • Ruegamer A et al (2011) A Bavarian Initiative towards a Robust Galileo PRS Receiver. In: Proceedings ION GNSS 2011, Portland, Oregon, USA, September 20–23, pp 3668–3678

  • Yao Z, Cui X, Lu M, Feng Z (2010) Pseudo-correlation-function-based unambiguous tracking technique for Sine-BOC signals. IEEE Trans Aerosp Electron Syst 46(4):1782–1796

    Article  Google Scholar 

  • Yao Z, Gao Y, Gao Y, Lu M (2017) Generalized theory of BOC signal unambiguous tracking with two-dimensional loops. IEEE Trans Aerosp Electron Syst 53(6):3056–3069

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC), under Grant 61771272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Yao.

Appendix derivation of closed-form analytical approximation expression

Appendix derivation of closed-form analytical approximation expression

Considering the BOCsin(\(\alpha k,k\)) signal, assume the normalized one-sided front-end bandwidth is wide enough to contain two main lobes of the BOCsin(\(\alpha k,k\)) signal spectrum, i.e., \(b \ge \alpha { + }1\). Substituting \(\Delta_{c} { = 1} \cdot T_{s}\) into (11) and (12), one can obtain the normalized slope matrix

$$\begin{aligned} \kappa_{cc} & = \frac{1}{\alpha \pi }\left( {2\text{Si} \left( {\frac{b}{2\alpha }\pi } \right) + \text{Si} \left( {\left( {4\alpha - 1} \right)\frac{b}{2\alpha }\pi } \right) - \text{Si} \left( {\left( {4\alpha + 1} \right)\frac{b}{2\alpha }\pi } \right)} \right) \\ \kappa_{cs} & = \kappa_{sc} \\ & = - \frac{4}{\alpha \pi }\left( {\sum\limits_{m = 1}^{2\alpha - 1} {\left( { - 1} \right)^{m + 1} \text{Si} \left( {m\frac{b}{\alpha }\pi } \right)} - \frac{1}{2} \cdot \text{Si} \left( {2b\pi } \right)} \right) \\ \kappa_{ss} & = \frac{2}{\alpha \pi }\left( {\sum\limits_{m = 1}^{2\alpha } {\left[ \begin{aligned} \left( { - 1} \right)^{m + 1} \left( {2m - 1} \right)\text{Si} \left( {\frac{b}{2\alpha }\pi \left( {D - \left( {4\alpha + 2 - 2m} \right)} \right)} \right) \hfill \\ + \, \left( { - 1} \right)^{m} \left( {2m - 1} \right)\text{Si} \left( {\frac{b}{2\alpha }\pi \left( {D + \left( {4\alpha - 2m} \right)} \right)} \right) \hfill \\ \end{aligned} \right]} } \right) \\ \end{aligned}$$
(24)

Using the approximation relation (18) then (24) can be further approximately simplified as (21). So (16) can be simplified as

$$\varUpsilon \approx \left\{ {\begin{array}{*{20}l} {\left( {\frac{\alpha }{4\alpha - 1}} \right)^{2} } \hfill & {bD \ge 3\alpha } \hfill \\ {\left( {\frac{\alpha \pi }{{2\left( {4\alpha - 1} \right)\left( { - 0.28\cos (\frac{bD}{2\alpha }\pi ) + \frac{\pi }{2}} \right)}}} \right)^{2} } \hfill & {b \ge 3\alpha ,\alpha < bD < 3\alpha } \hfill \\ {\left( {\frac{{\alpha^{2} }}{{\left( {4\alpha - 1} \right)bD}}} \right)^{2} } \hfill & {b \ge 3\alpha ,bD \le \alpha } \hfill \\ {\frac{{\tilde{\kappa }_{sc}^{2} + \tilde{\kappa }_{cc}^{2} - \tilde{\kappa }_{sc} \tilde{\kappa }_{cc} }}{{3 \cdot (\tilde{\kappa }_{cc} \tilde{\kappa }_{ss} - \tilde{\kappa }_{cs} \tilde{\kappa }_{sc} )^{2} }}} \hfill & {b < 3\alpha } \hfill \\ \end{array} } \right.$$
(25)

Similarly, for (17) there is

$$\Gamma = \frac{1}{{b\pi ^{2} }}\left\{ {\begin{array}{*{20}l} { - \left( {8\alpha + 2} \right) + 8\text{F} \left( {\frac{b}{{2\alpha }}\pi \left( {D - 1} \right)} \right)} \hfill \\ { -\, 4\text{F} \left( {\frac{b}{{2\alpha }}\pi \left( {D - \left( {4\alpha + 1} \right)} \right)} \right) - 4\text{F} \left( {\frac{b}{{2\alpha }}\pi \left( {D - \left( {4\alpha - 1} \right)} \right)} \right)} \hfill \\ { + \sum\limits_{{m = 1}}^{{4\alpha - 1}} {c_{m} \cdot \text{F} \left( {\frac{b}{\alpha }\pi \left( {D - \left( {2\alpha - m + 1} \right)} \right)} \right)} } \hfill \\ { + \sum\limits_{{m = 1}}^{{2\alpha + 1}} {a_{m} \cdot \text{F} \left( {m\frac{b}{\alpha }\pi } \right)} } \hfill \\ \end{array} } \right\}$$
(26)

where \(a_{m}\) and \(c_{m}\) are integer coefficient, which can be eliminated using the approximation relation (19). Substituting (19) into (26), after simplification one can obtain

$$\varGamma \approx \left\{ {\begin{array}{*{20}l} {\left( {4 - \frac{2}{\alpha }} \right)D + \frac{1}{\alpha }} \hfill & {b \ge 3\alpha ,bD \ge \alpha } \hfill \\ {\frac{{2\left( {2\alpha - 1} \right)}}{{\alpha^{2} }}bD^{2} + \frac{1}{\alpha }} \hfill & {b \ge 3\alpha ,bD < \alpha } \hfill \\ \zeta \hfill & {b < 3\alpha } \hfill \\ \end{array} } \right.$$
(27)

Substituting (25) and (27) into (15), we obtain the final closed-form analytical approximation expression (20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Yao, Z. & Lu, M. Theoretical analysis of unambiguous 2-D tracking loop performance for band-limited BOC signals. GPS Solut 22, 30 (2018). https://doi.org/10.1007/s10291-017-0695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-017-0695-5

Keywords

Navigation