Skip to main content
Log in

Galileo orbit determination using combined GNSS and SLR observations

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The first two Galileo In-Orbit Validation satellites were launched in October 2011 and started continuous signal transmission on all frequencies in early 2012. Both satellites are equipped with two different types of clocks, namely rubidium clocks and hydrogen masers. Based on two test periods, the quality of the Galileo orbit determination based on Global Navigation Satellite System (GNSS) and Satellite Laser Ranging (SLR) observations is assessed. The estimated satellite clock parameters are used as quality indicator for the orbits: A bump at orbital periods in the Allan deviation indicates systematic errors in the GNSS-only orbit determination. These errors almost vanish if SLR observations are considered in addition. As the internal consistency is degraded by the combination, the offset of the SLR reflector is shifted by +5 cm, resulting in an improved orbit consistency as well as accuracy. Another approach to reduce the systematic errors of the GNSS-only orbit determination employs constraints for the clock estimates with respect to a linear model. In general, one decimeter orbit accuracy could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Appleby G, Otsubo T (2000) Comparison of SLR measurements and orbits with GLONASS and GPS microwave orbits. In: Proceedings of 12th international workshop on laser ranging, Matera, November 13–17

  • Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70(1):714–723. doi:10.1007/BF00867149

    Article  Google Scholar 

  • Becker M, Zeimetz P, Schönemann E (2010) Antenna chamber calibrations and antenna phase center variations for new and existing GNSS signals. IGS Workshop 2010, Newcastle

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–386

    Google Scholar 

  • Chiarini JC, Mathew C, Honold HP, Smith D (2008) A satellite for the Galileo mission. Del Re E, Ruggieri M (eds) Satellite communications and navigation systems, signals and communication technology. Springer, pp 109–132. doi:10.1007/978-0-387-47524-0_9

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi:10.1007/s00190-008-0281-2

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • ESA (2011) GIOVE Experimentation results: a success story. Technical report SP-1320, European Space Agency, Noordwijk

  • Flohrer C (2008) Mutual validation of satellite-geodetic techniques and its impact on GNSS orbit modeling. Swiss Geodetic Commission, Zürich

    Google Scholar 

  • García Á, Píriz R, Fernández V, Navarro-Reyes D, González F, Hahn J (2008) GIOVE orbit and clock determination and prediction: experimentation results. In: Proceedings of ENC GNSS 2008

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2007) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399. doi:10.1007/s00190-007-0187-4

    Article  Google Scholar 

  • Gendt G, Altamimi Z, Dach R, Söhne W, Springer T, The GGSP Prototype Team (2011) GGSP: realisation and maintenance of the Galileo terrestrial reference frame. Adv Space Res 47(2):174–185. doi:10.1016/j.asr.2010.02.001

    Article  Google Scholar 

  • Gurtner W, Estey L (2009) RINEX—the receiver independent exchange format version 3.01. Available at http://igscb.jpl.nasa.gov/igscb/data/format/ rinex301.pdf

  • Hahn J, González F, Waller P, Navarro-Reyes D, Piriz R, Mozo A, Fernandez V, Cueto M, Tavella P, Sesia I (2007) GIOVE-A apparent clock assessment and results. In: Proceedings of 39th Annual Precise Time and Time Interval (PTTI) meeting, pp 95–114

  • Hidalgo I, Mozo A, Navarro P, Piriz R, Navarro-Reyes D (2008a) Use of SLR observations to improve GIOVE-B orbit and clock determination. In: Schilliak S (ed) Proceedings of 16th International Workshop on Laser Ranging, vol 2, Space Research Centre, Polish Academy of Sciences, pp 71–84

  • Hidalgo I, Piriz R, Mozo A, Tobias G, Tavella P, Sesia I, Crerretto G, Waller P, González F, Hahn J (2008b) Estimation and prediction of the GIOVE clocks. In: Proceedings 40th annual precise time and time interval (PTTI) meeting, pp 361–374

  • Kirchner M, Schmidt R, Vilzmann J (2009) Results of GIOVE data processing to allow evaluation of principal system performance drivers. In: Proceedings European Navigation Conference—Global Navigation Satellite Systems, Naples, Italy. May 3–6, available at http://www.baynavtech.com/papers/results_GIOVE-data-processing.pdf

  • Kouba J, Mireault Y (1996) IGS analysis coordinator report. In: Zumberge J, Urban M, Liu R, Neilan R (eds) International GPS Service for Geodynamics 1995 Annual Report. Jet Propulsion Laboratory, Pasadena, pp 45–76

    Google Scholar 

  • Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12. doi:10.1007/s10291-008-0092-1

    Article  Google Scholar 

  • Meindl M, Schaer S, Hugentobler U, Beutler G (2003) Tropospheric gradient estimation at CODE: results from global solutions. In: Proceedings of International Workshop on GPS Meteorology, pp 1-28-1–1-28-5

  • Montenbruck O, Hauschild A, Hessels U (2011) Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solut 15(3):193–205. doi:10.1007/s10291-010-0182-8

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Schönemann E, Hauschild A, Hugentobler U, Dach R, Becker M (2012) Flight characterization of new generation GNSS satellite clocks. J Inst Navig 59(4):291–302

    Article  Google Scholar 

  • Navarro-Reyes D, Gonzalez F, Svehla D, Zandbergen R (2011) ILRS SLR mission support request for Galileo-101 and Galileo-102. Available at http://ilrs.gsfc.nasa.gov/docs/ILRS_MSR_Galileo_201106.pdf

  • Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246. doi:10.1029/95JB03048

    Article  Google Scholar 

  • Pavlis E (2009) SLRF2008: the ILRS reference frame for SLR POD contributed to ITRF2008. In: Proceedings of 2009 Ocean Surface Topography Science Team Meeting, Seattle, June 22–24

  • Pavlis E, Beard R (1996) The laser retroreflector experiment on GPS-35 and 36. In: Beutler G, Hein G, Melbourne W, Seeber G (eds) GPS trends in precise terrestrial, airborne and spaceborne applications, vol 115 of International Association of Geodesy Symposia, Springer, New York, Berlin, Heidelberg, pp 154–158. ISBN: 3-540-60872-9

  • Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):125–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi:10.1007/s10291-011-0248-2

    Article  Google Scholar 

  • Rizos C, Montenbruck O, Weber R, Weber G, Neilan R, Hugentobler U (2013) The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. In: Proceedings of ION PNT 2013

  • Robertson G, Kieffer R (2009) GIOVE-B satellite design and performance validation. In: Proceedings of ION GNSS 2009, pp 3008–3016

  • Rodriguez-Solano C, Hugentobler U, Steigenberger P (2012) Impact of albedo radiation on GPS satellites. Geodesy for Planet Earth, vol 136 of International Association of Geodesy Symposia. Springer, pp 113–119. doi:10.1007/978-3-642-20338-1_14

  • Rooney E, Unwin M, Gatti G, Falcone M, Binda S, Malik M, Hannes D (2007) Giove-A in orbit testing results. In: Proceedings of ION GNSS 2007, pp 467–477

  • Schönemann E, Springer T, Otten M, Becker M, Dow J (2007) GIOVE-A precise orbit determination from microwave and satellite laser ranging data—first perspectives for the Galileo constellation and its scientific use. In: Proceedings of First Colloquium on Scientific and Fundamental Aspects of the Galileo Programme 2007, Toulouse, France. October 1–4, available at http://ilrs.gsfc.nasa.gov/docs/2007_Schoenemann_Toulouse_paper.pdf

  • Schönemann E, Springer TA, Otten M, Becker M (2009) Where is GIOVE-A exactly? GPS World 20(7):42–50

    Google Scholar 

  • Steigenberger P, Hauschild A, Montenbruck O, Hugentobler U (2013a) Galileo, Compass und QZSS: Aktueller Stand der neuen Satellitennavigationssysteme. zfv 138(1):53–59

  • Steigenberger P, Hugentobler U, Montenbruck O, Hauschild A (2011) Precise orbit determination of GIOVE-B based on the CONGO network. J Geod 85(6):357–365. doi:10.1007/s00190-011-0443-5

    Article  Google Scholar 

  • Steigenberger P, Rodriguez-Solano C, Hugentobler U, Hauschild A, Montenbruck O (2013b) Orbit and clock determination of QZS-1 based on the CONGO network. J Inst Navig 60(1):31–40. doi:10.1002/navi.27

    Article  Google Scholar 

  • Uhlemann M, Ramatschi M, Gendt G (2012) GFZ’s global multi-GNSS network and first data processing results. IGS Workshop 2012

  • Urschl C, Beutler G, Gurtner W, Hugentober U, Ploner M (2008) Orbit determination for GIOVE-A using SLR tracking data. In: Luck J, Moore CWP (eds) Extending the range. In: Proceedings of 15th International Workshop on Laser Ranging, pp 40–46

  • Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10):1515–1523. doi:10.1016/j.asr.2007.01.038

    Article  Google Scholar 

  • Urschl C, Gurtner W, Hugentobler U, Schaer S, Beutler G (2005) Validation of GNSS orbits using SLR observations. Adv Space Res 36(3):412–417. doi:10.1016/j.asr.2005.03.021

    Article  Google Scholar 

  • Waller P, Gonzalez F, Binda S, Rodriguez D, Tobias G, Cernigliaro A, Sesia I, Tavella P (2010) Long-term performance analysis of GIOVE clocks. In: Proceedings of 42nd Annual Precise Time and Time Interval Meeting, pp 171–179

  • Weber R (2012) IGS GNSS working group. In: Meindl M, Dach R, Jean Y (eds) International GNSS Service Technical Report 2011. Jet Propulsion Laboratory, Pasadena, pp 159–163

    Google Scholar 

  • Weinbach U, Schön S (2013) Improved GRACE kinematic orbit determination using GPS receiver clock modeling. GPS Solut 17(4):511–520. doi:10.1007/s10291-012-0297-1

    Article  Google Scholar 

  • Wu J, Wu S, Hajj G, Bertiger W, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98

    Google Scholar 

Download references

Acknowledgments

We would like to thank all local CONGO station hosts for their support. The International GNSS Service (IGS) is acknowledged for providing Galileo observation data in the framework of its Multi-GNSS EXperiment (MGEX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Steigenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackel, S., Steigenberger, P., Hugentobler, U. et al. Galileo orbit determination using combined GNSS and SLR observations. GPS Solut 19, 15–25 (2015). https://doi.org/10.1007/s10291-013-0361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-013-0361-5

Keywords

Navigation