Skip to main content

Advertisement

Log in

Satellite clock estimation at 1 Hz for realtime kinematic PPP applications

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Realtime kinematic precise point positioning (PPP) requires 1 Hz GPS satellite clock corrections. An efficient clock estimation approach is presented. It applies a combined dual-thread algorithm consisting of an undifferenced (UD) and epoch-differenced (ED) engine. The UD engine produces absolute clock values every 5 s, and the ED engine produces relative clock values between neighboring epochs at 1-s interval. A final 1-Hz satellite clock can be generated by combining the UD absolute clock and ED relative clock efficiently and accurately. Forty stations from a global tracking network are used to estimate the realtime 1-Hz clock with the proposed method. Both the efficiency and accuracy of the resultant clock corrections are validated. Efficiency test shows that the UD processing thread requires an average time of 1.88 s on a 1-GHz CPU PC for one epoch of data, while ED processing requires only 0.25 s. Accuracy validation test shows that the estimated 1-Hz clock agrees with IGS final clock accurately. The RMS values of all the available GPS satellite clock bias are less than 0.2 ns (6 cm), and most of them are less than 0.1 ns (3 cm). All the RMS values of Signal in Space Range Error (SISRE) are at centimeter level. Applying the accurate and realtime clock to realtime PPP, an accuracy of 10 cm in the horizontal and 20 cm in the vertical is achieved after a short period of initialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geod 83(11):1083–1094. doi:10.1007/s00190-009-0326-1

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Fang P, Gendt G, Springer T, Manucci T (2001) IGS near realtime products and their applications. GPS Solut 4(4):2–8. doi:10.1007/PL00012861

    Article  Google Scholar 

  • Guo F, Zhang X, Li X, Cai S (2010) Impact of sampling rate of IGS satellite clock on precise point positioning. Geo-spat Inf Sci 13(2):150–156. doi:10.1007/s11806-010-0226-9

    Article  Google Scholar 

  • Hauschild A, Montenbruck O (2009) Kalman-filter-based GPS clock estimation for near realtime positioning. GPS Solut 13(3):173–182. doi:10.1007/s10291-008-0110-3

    Article  Google Scholar 

  • Kouba J (2009) A guide to using International GNSS Service (IGS) Products. Geodetic survey division, Natural Resources Canada, Ottawa, Canada. Available at http://igscb.jpl.nasa.gov/

  • Kouba J, Hérous P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28. doi:10.1007/PL00012883

    Article  Google Scholar 

  • Malys S, Larezos M, Gottschalk S, Mobbs S, Winn B, Swift E, Mathon W (1997) The GPS accuracy improvement initiative. Proceedings ION-GPS-97, pp 375–384

  • Montenbruck O, Gill E, Kroes R (2005) Rapid orbit determination of LEO satellites using IGS clock and ephemeris products. GPS Solut 9(3):226–235. doi:10.1007/s10291-005-0131-0

    Article  Google Scholar 

  • Pérez J, Agrotis L, Fernández J, Garcia C, Dow J (2006) ESA/ESOC real time data processing. IGS Workshop 2006, Darmstadt, Germany

  • Ray J, Griffiths J, Trans E (2008) Status of IGS ultra-rapid products for realtime applications. 2008 AGU Fall Meeting. 18 Dec 2008, San Francisco

  • Satirapod C, Wang J, Rizos C (2002) A simplified MINQUE procedure for the estimation of variance-covariance components of GPS observables. Surv Rev 36(286):582–590

    Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Warren D, Raquet J (2003) Broadcast vs. precise GPS ephemerides: a historical perspective. GPS Solut 7(3):151–156. doi:10.1007/s10291-003-0065-3

    Article  Google Scholar 

  • Wu J, Wu S, Hajj G, Bertiger W, Lichten S (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98

    Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Jim Ray and other anonymous reviewers. Their valuable comments and suggestions improve the manuscripts greatly. This study was supported by China National Natural Science Foundation of China (No: 40874017; No: 41074024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Li, X. & Guo, F. Satellite clock estimation at 1 Hz for realtime kinematic PPP applications. GPS Solut 15, 315–324 (2011). https://doi.org/10.1007/s10291-010-0191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-010-0191-7

Keywords

Navigation