Skip to main content

Advertisement

Log in

Selected autonomic signs and symptoms as risk markers for phenoconversion and functional dependence in prodromal Parkinson’s disease

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

To determine whether dysautonomia can stratify individuals with other prodromal markers of Parkinson’s disease (PD) for risk of phenoconversion and functional decline, which may help identify subpopulations appropriate for experimental studies.

Methods

Data were obtained from Parkinson’s Progression Markers Initiative. Cohorts without PD but with at-risk features were included (hyposmia and/or rapid-eye-movement-sleep behavior disorder, LRRK2 gene mutation, GBA gene mutation). Dysautonomia measures included Scales-for-Outcomes-in-Parkinson’s-Disease Autonomic (SCOPA-AUT), seven SCOPA-AUT subscales, and cardiovascular dysfunction (supine hypertension, low pulse pressure, neurogenic orthostatic hypotension). Outcome measures were phenoconversion and Schwab-and-England Activities-of-Daily-Living (SE-ADL) ≤ 70, which indicates functional dependence. Cox proportional-hazards regression was used to evaluate survival to phenoconversion/SE-ADL ≤ 70 for each dysautonomia measure. If a significant association was identified, a likelihood-ratio test was employed to evaluate whether a significant interaction existed between the measure and cohort. If so, regression analysis was repeated stratified by cohort.

Results

Median follow-up was 30 months. On multivariable analysis, gastrointestinal and female sexual dysfunction subscales were associated with increased risk of phenoconversion, while the cardiovascular subscale and neurogenic orthostatic hypotension were associated with increased risk of SE-ADL ≤ 70; respective hazard ratios (95% confidence intervals) were 1.13 (1.01–1.27), 3.26 (1.39–7.61), 1.87 (1.16–2.99), 5.45 (1.40–21.25). Only the association between the cardiovascular subscale and SE-ADL ≤ 70 was modified by cohort.

Conclusions

Symptoms of gastrointestinal and female sexual dysfunction predict phenoconversion in individuals with other risk markers for PD, while signs and symptoms of cardiovascular dysfunction may be associated with functional decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Devos D, Hirsch E, Wyse R (2021) Seven solutions for neuroprotection in Parkinson’s disease. Mov Disord 36(2):306–316

    Article  PubMed  Google Scholar 

  2. Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, Gasser T, Goetz CG, Halliday G, Joseph L et al (2015) MDS research criteria for prodromal Parkinson’s disease. Mov Disord 30(12):1600–1611

    Article  PubMed  Google Scholar 

  3. Heinzel S, Berg D, Gasser T, Chen H, Yao C, Postuma RB (2019) Disease MDSTFotDoPs: update of the MDS research criteria for prodromal Parkinson’s disease. Mov Disord 34(10):1464–1470

    Article  PubMed  Google Scholar 

  4. Fereshtehnejad SM, Montplaisir JY, Pelletier A, Gagnon JF, Berg D, Postuma RB (2017) Validation of the MDS research criteria for prodromal Parkinson’s disease: Longitudinal assessment in a REM sleep behavior disorder (RBD) cohort. Mov Disord 32(6):865–873

    Article  PubMed  Google Scholar 

  5. Pilotto A, Heinzel S, Suenkel U, Lerche S, Brockmann K, Roeben B, Schaeffer E, Wurster I, Yilmaz R, Liepelt-Scarfone I et al (2017) Application of the Movement Disorder Society prodromal Parkinson’s disease research criteria in 2 independent prospective cohorts. Mov Disord 32(7):1025–1034

    Article  CAS  PubMed  Google Scholar 

  6. Mahlknecht P, Gasperi A, Djamshidian A, Kiechl S, Stockner H, Willeit P, Willeit J, Rungger G, Poewe W, Seppi K (2018) Performance of the movement disorders society criteria for prodromal Parkinson’s disease: a population-based 10-year study. Mov Disord 33(3):405–413

    Article  PubMed  Google Scholar 

  7. Mirelman A, Saunders-Pullman R, Alcalay RN, Shustak S, Thaler A, Gurevich T, Raymond D, Mejia-Santana H, Orbe Reilly M, Ozelius L et al (2018) Application of the Movement Disorder Society prodromal criteria in healthy G2019S-LRRK2 carriers. Mov Disord 33(6):966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kulcsarova K, Ventosa JR, Feketeova E, Maretta M, Lesko N, Benca M, Han V, Gombosova L, Baloghova J, Slavkovska M et al (2021) Comparison in detection of prodromal Parkinson’s disease patients using original and updated MDS research criteria in two independent cohorts. Parkinsonism Relat Disord 87:48–55

    Article  CAS  PubMed  Google Scholar 

  9. Marini K, Seppi K, Tschiderer L, Kiechl S, Stockner H, Willeit P, Willeit J, Djamshidian A, Rungger G, Poewe W et al (2021) Application of the updated Movement Disorder Society criteria for prodromal Parkinson’s disease to a population-based 10-year study. Mov Disord 36(6):1464–1466

    Article  PubMed  PubMed Central  Google Scholar 

  10. Postuma RB, Gagnon JF, Pelletier A, Montplaisir J (2013) Prodromal autonomic symptoms and signs in Parkinson’s disease and dementia with Lewy bodies. Mov Disord 28(5):597–604

    Article  PubMed  Google Scholar 

  11. Gao X, Chen H, Schwarzschild MA, Glasser DB, Logroscino G, Rimm EB, Ascherio A (2007) Erectile function and risk of Parkinson’s disease. Am J Epidemiol 166(12):1446–1450

    Article  PubMed  Google Scholar 

  12. Gao X, Chen H, Schwarzschild MA, Ascherio A (2011) A prospective study of bowel movement frequency and risk of Parkinson’s disease. Am J Epidemiol 174(5):546–551

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin CH, Lin JW, Liu YC, Chang CH, Wu RM (2014) Risk of Parkinson’s disease following severe constipation: a nationwide population-based cohort study. Parkinsonism Relat Disord 20(12):1371–1375

    Article  PubMed  Google Scholar 

  14. Schrag A, Horsfall L, Walters K, Noyce A, Petersen I (2015) Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol 14(1):57–64

    Article  PubMed  Google Scholar 

  15. Kaufmann H, Norcliffe-Kaufmann L, Palma JA, Biaggioni I, Low PA, Singer W, Goldstein DS, Peltier AC, Shibao CA, Gibbons CH et al (2017) Natural history of pure autonomic failure: a United States prospective cohort. Ann Neurol 81(2):287–297

    Article  PubMed  PubMed Central  Google Scholar 

  16. Singer W, Berini SE, Sandroni P, Fealey RD, Coon EA, Suarez MD, Benarroch EE, Low PA (2017) Pure autonomic failure: predictors of conversion to clinical CNS involvement. Neurology 88(12):1129–1136

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coon EA, Mandrekar JN, Berini SE, Benarroch EE, Sandroni P, Low PA, Singer W (2020) Predicting phenoconversion in pure autonomic failure. Neurology 95(7):e889–e897

    Article  PubMed  PubMed Central  Google Scholar 

  18. Postuma RB, Iranzo A, Hu M, Hogl B, Boeve BF, Manni R, Oertel WH, Arnulf I, Ferini-Strambi L, Puligheddu M et al (2019) Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 142(3):744–759

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parkinson Progression Marker I: The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol (2011), 95(4):629–635

  20. Mollenhauer B, Caspell-Garcia CJ, Coffey CS, Taylor P, Singleton A, Shaw LM, Trojanowski JQ, Frasier M, Simuni T, Iranzo A et al (2019) Longitudinal analyses of cerebrospinal fluid alpha-synuclein in prodromal and early Parkinson’s disease. Mov Disord 34(9):1354–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simuni T, Uribe L, Cho HR, Caspell-Garcia C, Coffey CS, Siderowf A, Trojanowski JQ, Shaw LM, Seibyl J, Singleton A et al (2020) Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson’s progression markers initiative (PPMI): a cross-sectional study. Lancet Neurol 19(1):71–80

    Article  CAS  PubMed  Google Scholar 

  22. Darweesh SK, Verlinden VJ, Stricker BH, Hofman A, Koudstaal PJ, Ikram MA (2017) Trajectories of prediagnostic functioning in Parkinson’s disease. Brain 140(2):429–441

    Article  PubMed  Google Scholar 

  23. Chahine LM, Iranzo A, Fernandez-Arcos A, Simuni T, Seedorff N, Caspell-Garcia C, Amara AW, Comella C, Hogl B, Hamilton J et al (2019) Basic clinical features do not predict dopamine transporter binding in idiopathic REM behavior disorder. NPJ Parkinsons Dis 5:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ (2004) Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov Disord 19(11):1306–1312

    Article  PubMed  Google Scholar 

  25. Gibbons CH, Freeman R (2015) Clinical implications of delayed orthostatic hypotension: a 10-year follow-up study. Neurology 85(16):1362–1367

    Article  PubMed  PubMed Central  Google Scholar 

  26. Umehara T, Matsuno H, Toyoda C, Oka H (2016) Clinical characteristics of supine hypertension in de novo Parkinson disease. Clin Auton Res 26(1):15–21

    Article  PubMed  Google Scholar 

  27. Park JH, Han SW, Baik JS (2017) A comparative study of central hemodynamics in Parkinson’s disease. J Mov Disord 10(3):135–139

    Article  PubMed  PubMed Central  Google Scholar 

  28. McRae C, Diem G, Vo A, O’Brien C, Seeberger L (2000) Schwab & England: standardization of administration. Mov Disord 15(2):335–336

    Article  CAS  PubMed  Google Scholar 

  29. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653

    Article  PubMed  Google Scholar 

  30. Fox GN, Moawad N (2003) UpToDate: a comprehensive clinical database. J Fam Pract 52(9):706–710

    PubMed  Google Scholar 

  31. Boston RC, Sumner AE (2003) STATA: a statistical analysis system for examining biomedical data. Adv Exp Med Biol 537:353–369

    Article  PubMed  Google Scholar 

  32. Glynn RJ, Chae CU, Guralnik JM, Taylor JO, Hennekens CH (2000) Pulse pressure and mortality in older people. Arch Intern Med 160(18):2765–2772

    Article  CAS  PubMed  Google Scholar 

  33. Hinkle JT, Perepezko K, Mills KA, Mari Z, Butala A, Dawson TM, Pantelyat A, Rosenthal LS, Pontone GM (2018) Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson disease. Parkinsonism Relat Disord 55:8–14

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim R, Jun JS (2019) Association of autonomic symptoms with presynaptic striatal dopamine depletion in drug-naive Parkinson’s disease: an analysis of the PPMI data. Auton Neurosci 216:59–62

    Article  CAS  PubMed  Google Scholar 

  35. van Deursen DN, van den Heuvel OA, Booij J, Berendse HW, Vriend C (2020) Autonomic failure in Parkinson’s disease is associated with striatal dopamine deficiencies. J Neurol 267(7):1922–1930

    Article  PubMed  PubMed Central  Google Scholar 

  36. Anang JB, Gagnon JF, Bertrand JA, Romenets SR, Latreille V, Panisset M, Montplaisir J, Postuma RB (2014) Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology 83(14):1253–1260

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim JS, Park HE, Park IS, Oh YS, Ryu DW, Song IU, Jung YA, Yoo IR, Choi HS, Lee PH et al (2017) Normal ‘heart’ in Parkinson’s disease: is this a distinct clinical phenotype? Eur J Neurol 24(2):349–356

    Article  PubMed  Google Scholar 

  38. Varanda S, da Ribeiro SJ, Costa AS, de Amorim CC, Alves JN, Rodrigues M, Carneiro G (2016) Sexual dysfunction in women with Parkinson’s disease. Mov Disord 31(11):1685–1693

    Article  PubMed  Google Scholar 

  39. Vela-Desojo L, Urso D, Kurtis-Urra M, Garcia-Ruiz PJ, Perez-Fernandez E, Lopez-Valdes E, Posada-Rodriguez I, Ybot-Gorrin I, Lopez-Manzanares L, Mata M et al (2020) Sexual dysfunction in early-onset Parkinson’s disease: a cross-sectional multicenter study. J Parkinsons Dis 10(4):1621–1629

    Article  CAS  PubMed  Google Scholar 

  40. Fereshtehnejad SM, Romenets SR, Anang JB, Latreille V, Gagnon JF, Postuma RB (2015) New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol 72(8):863–873

    Article  PubMed  Google Scholar 

  41. Plouvier AO, Hameleers RJ, van den Heuvel EA, Bor HH, Olde Hartman TC, Bloem BR, van Weel C, Lagro-Janssen AL (2014) Prodromal symptoms and early detection of Parkinson’s disease in general practice: a nested case-control study. Fam Pract 31(4):373–378

    Article  PubMed  Google Scholar 

  42. Jennings D, Siderowf A, Stern M, Seibyl J, Eberly S, Oakes D, Marek K, Investigators P (2017) Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter-deficit prodromal cohort. JAMA Neurol 74(8):933–940

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). PPMI—a public–private partnership—is funded by the Michael J. Fox Foundation and funding partners 4D Pharma, AbbVie, AcureX Therapeutics, Allergan, Amathus Therapeutics, ASAP, Avid Radiopharmaceuticals, BIAL Biotech, Biogen, BioLegend, Bristol-Myers Squibb, Calico, Celgene, DaCapo Brain Science, Denali, The Edmond J. Safra Foundation, GE Healthcare, Genentech, GlaxoSmithKline, Golub Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Lilly, Lundbeck, Merck, Meso Scale Discovery, Neurocrine Biosciences, Pfizer, Piramal, Prevail, Roche, Sanofi Genzyme, Servier, Takeda, Teva, UCB, Verily, and Voyager Therapeutics. For up-to-date information on the study, visit www.ppmi-info.org.

Funding

This work was supported by the National Institutes of Health Pharmacoepidemiology T32 Grant GM075766, provided by the Perelman School of Medicine at the University of Pennsylvania.

Author information

Authors and Affiliations

Authors

Contributions

CMP developed the hypothesis, designed and performed the analysis, and prepared the manuscript. JYH provided guidance on statistical analysis and revisions for the manuscript. LMC, JFM, and AWW provided guidance on the analysis plan and revisions for the manuscript.

Corresponding author

Correspondence to Cameron Miller-Patterson.

Ethics declarations

Conflict of interest

Dr. Miller-Patterson has nothing to disclose. Dr. Hsu has received personal compensation in the range of $10,000–$49,999 for serving as Editor, Associate Editor, or Editorial Advisory Board Member for National Kidney Foundation and Public Library of Science. Dr. Chahine has received personal compensation in the range of $500–$4,999 for serving as a consultant for Gray Matters Technology. Dr. Chahine has received research support from University of Pittsburgh Medical Center, Michael J. Fox Foundation, and Biogen/Parkinson Study Group. Dr. Chahine has received publishing royalties from a publication relating to health care. Dr. Morley has nothing to disclose. Dr. Willis has received personal compensation in the range of $0–$499 for serving as an Editor, Associate Editor, or Editorial Advisory Board Member for Pharmacoepidemiology and Drug Safety. Dr. Willis has received research support from National Institutes of Health, National Institute on Aging, Biogen, Parkinson Foundation, and Arcadia.

Ethical approval

Each Parkinson’s Progression Markers Initiative site received approval from an ethics committee on human experimentation in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments before study initiation and obtained written informed consent from each study participant.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller-Patterson, C., Hsu, J.Y., Chahine, L.M. et al. Selected autonomic signs and symptoms as risk markers for phenoconversion and functional dependence in prodromal Parkinson’s disease. Clin Auton Res 32, 463–476 (2022). https://doi.org/10.1007/s10286-022-00889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-022-00889-8

Keywords

Navigation