Skip to main content

Advertisement

Log in

Neuroendocrine and behavioural responses to CO2 inhalation in central versus peripheral autonomic failure

  • RESEARCH ARTICLE
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Multiple system atrophy (MSA) and pure autonomic failure (PAF) represent distinct pathological models of autonomic failure in humans. We have investigated the neuroendocrine, behavioural and autonomic cardiovascular responses to the 35% CO2 challenge. Nine patients with MSA, nine with PAF and five control subjects received a single breath of 35% CO2. Peripheral autonomic failure (i.e., PAF) was associated with significantly lower resting noradrenaline levels. All groups demonstrated a significant pressor response to CO2. In controls, the mean pressor response was +60.2 mm Hg, which was significantly smaller in both the PAF (+26.8 mm Hg, P < 0.01) and MSA (+18.3 mm Hg, P < 0.001) patients. In addition, the onset of the response was significantly delayed in both MSA (140.2 s) and PAF (154.2 s) patients compared with controls (32.4 s, P = 0.04 and P = 0.03, respectively). Noradrenaline levels increased only in controls. Central autonomic impairment (i.e., MSA) was associated with lower cortisol release (+8.8% in MSA compared with +35.2% in control and +23.7% in PAF) and fewer somatic symptoms of emotional arousal. Both MSA and PAF exhibit marked sympathetic autonomic impairment, however, residual (albeit differing) sympathetic pathways can still maintain a partial cardiovascular response. A central autonomic lesion, however, also appears to be associated with blunting of both cortisol and emotional responses to this stress paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Thoracic Society (1999) Idiopathic congenital central hypoventilation syndrome: diagnosis and management. Am J Respir Crit Care Med 160:368–373

    Google Scholar 

  2. Argyropoulos SV, Bailey JE, Hood SD, Kendrick AH, Rich A, Laszlo G, Lightman SL, Nutt DJ (2002) Inhalation of 35% CO2 results in subjective fear and activates the HPA axis. Psychoneuroendocrinol 27:715–729

    Article  CAS  Google Scholar 

  3. Bailey J, Argyropoulos SV, Lightman SL, Nutt DJ (2003) Does the brain noradrenaline network mediate the effects of the CO2 challenge. J Psychopharmacol 17:252–259

    Article  CAS  PubMed  Google Scholar 

  4. Bannister R, Mathias CJ (2002) Clinical feature and evaluation of the primary autonomic failure syndromes. In: Mathias CJ, Bannister R (eds) Autonomic failure. A textbook of clinical disorders of the autonomic nervous system 4th ed. reprinted. Oxford University Press, Oxford, pp 307–316

  5. Braune S, Hetzel A, Prasse A, Dohms K, Guschlbauer B, Lucking CH (1997) Stimulation of sympathetic activity by carbon dioxide in patients with autonomic failure compared to normal subjects. Clin Auton Res 7:327–332

    Article  CAS  PubMed  Google Scholar 

  6. Chatterton RT Jr, Vogelsong KM, Lu YC, Ellman AB, Hudgens GA (1996) Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol 16:433–448

    CAS  PubMed  Google Scholar 

  7. Coplan JD, Moreau D, Chaput F, Martinez JA, Hoven CW, Mandell DJ, Gorman JM, Pine DS (2002) Salivary cortisol concentrations before and after carbondioxide inhalations in children. Biol Psychiat 51:326–333

    Article  CAS  PubMed  Google Scholar 

  8. Critchley HD, Mathias CJ, Dolan RJ (2001) Neuroanatomical basis for first- and second-order representations of bodily states. Nat Neurosci 4:207–212

    Article  CAS  PubMed  Google Scholar 

  9. Cross BA, Silver IA (1962) Central activation of the sympathetico-adrenal system by hypoxia and hypercapnia. J Endocrinol 24:91–103

    Article  CAS  PubMed  Google Scholar 

  10. Dotson R, Ochoa J, Marchettini P, Cline M. (1990) Sympathetic neural outflow directly recorded in patients with primary autonomic failure: clinical observations, microneurography, and histopathology. Neurology 40:1079–1085

    CAS  PubMed  Google Scholar 

  11. Gilman S, Low PA, Quinn N, et al (1998) Consensus statement on the diagnosis of MSA. Clin Auton Res 8:359–362

    Article  CAS  PubMed  Google Scholar 

  12. Greiz E, de Loof C, Pols H, Zandbergen J, Lousberg H (1990) Specific sensitivity of patients with panic attacks to carbon dioxide inhalation. Psychiat Res 31:193–199

    Article  Google Scholar 

  13. Greiz E, Schreurs K (2003) Mechanisms of CO2 challenges. J Psychopharmacol 17:260–262

    Article  Google Scholar 

  14. Habib KE, Gold PW, Chrousos GP (2001) Neuroendocrinology of stress. Endocrinol Metab Clin North Am 30:695–728

    Article  CAS  PubMed  Google Scholar 

  15. Kaye JM, Buchanan F, Kendrick A, Johnson P, Lowry C, Bailey J, Nutt D, Lightman SL (2004) Acute carbon dioxide exposure in healthy adults: evaluation of a novel means of investigating the stress response. J Neuroendocrinol 16:256–264

    Article  CAS  PubMed  Google Scholar 

  16. Kaye JM, Corrall RJ, Lightman SL (2005) A new test for autonomic cardiovascular and neuroendocrine responses in diabetes mellitus: evidence for early vagal dysfunction. Diabetologia 48:180–186

    Article  CAS  PubMed  Google Scholar 

  17. Klein D (1993) False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Arch Gen Psych 50:306–317

    CAS  Google Scholar 

  18. Langewouters GJ, Settels JJ, Roelandt R, Wesseling KH (1998) Why use Finapres or Portapres rather than intra-arterial or intermittent non-invasive techniques of blood pressure measurement? Med Eng Technol 22:37–43

    Article  CAS  Google Scholar 

  19. Mathias CJ (2004) Disorders of the autonomic nervous system. In: Bradley WG, Daroff RB, Fenichel GM, Marsden CD (eds) Neurology in clinical practice, 4th ed. Butterworth-Heinemann Boston, pp 2131–2165

  20. Meiri G, Ben-Zion I, Greenberg B, Murphy D, Benjamin J (2001) Influence of the serotonin antagonist, metergoline, on the anxiogenic effects of carbon dioxide, and on heart rate and neuroendocrine measures, in healthy volunteers. Hum Psychopharmacol Clin Exp 16:237–245

    Article  CAS  Google Scholar 

  21. Nattie E (1999) CO2, brainstem chemoreception and breathing. Prog Neurobiol 59:299–331

    Article  CAS  PubMed  Google Scholar 

  22. Nutt DJ, Glue P, Lawson C, Wilson S (1990) Flumazenil provocation of panic attacks. Arch Gen Psych 47:917–925

    CAS  Google Scholar 

  23. Parikh SM, Diedrich A, Biaggioni I, Robertson D (2002) The nature of the autonomic dysfunction in multiple system atrophy. J Neurol Sci 200:1–10

    Article  PubMed  Google Scholar 

  24. Perna G, Barbini B, Cocchi S, Bertani A, Gasperini M (1995) 35% CO2 challenge in panic and mood disorders. J Affective Disord 33:189–194

    Article  CAS  Google Scholar 

  25. Perna G, Battaglia M, Garberi A, Arancio C, Bertani A, Bellodi L (1994) 35% CO2/65% O2 inhalation test in panic patients. Psychiat Res 52:159–171

    Article  CAS  Google Scholar 

  26. Pine DS, Weese-Mayer DE, Silvestri JM, Davies M, Whitaker AH, Klein DF (1994) Anxiety and congenital central hypoventilation syndrome. Am J Psychiat 151:864–870

    CAS  PubMed  Google Scholar 

  27. Polinsky RJ (2002) Neuropharmacological investigation of autonomic failure. In: Mathias CJ, Bannister R (eds) Autonomic failure. A textbook of clinical disorders of the autonomic nervous system 4th ed. reprinted. Oxford University Press Oxford pp 232–244

  28. Polinsky RJ, Brown RT, Curras MT, Baser SM, Baucom CE, Hooper DR, Marini AM (1991) Central and peripheral effects of arecoline in patients with autonomic failure. J Neurol Neurosurg Psychiat 54:807–812

    Article  CAS  PubMed  Google Scholar 

  29. Sechzer PH, Egbert LD, Linde HW, Cooper DY, Dripps RD, Price HL (1960) Effect of CO2 inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. J Appl Physiol 15:454–458

    CAS  PubMed  Google Scholar 

  30. Shannon JR, Jordan J, Diedrich A, Pohar B, Black BK, Robertson D, Biaggioni I (2000) Sympathetically mediated hypertension in autonomic failure. Circulation 101:2710–2715

    CAS  PubMed  Google Scholar 

  31. Sinha SS, Coplan JD, Pine DS, Martinez JA, Klein DF, Gorman JM (1999) Panic induced by carbon dioxide and lack of hypothalamic-pituitary-adrenal axis activation. Psychiat Res 86:93–98

    Article  CAS  Google Scholar 

  32. Smedes F, Kraak JC, Poppe H (1982) A simple and fast solvent extraction system for selective and quantitative isolation of adrenaline, noradrenaline and dopamine from plasma and urine. J Chromatogr 231:25–39

    CAS  PubMed  Google Scholar 

  33. Tenney SM (1960) The effect of carbon dioxide on neurohumoral and endocrine mechanisms. Anesthesiology 21:674–685

    CAS  PubMed  Google Scholar 

  34. Verburg K, Griez E, Meijer J, Pols H (1995) Discrimination between panic disorder and generalized anxiety disorder by 35% carbon dioxide challenge. Am J Psychiat 152:1081–1083

    CAS  PubMed  Google Scholar 

  35. Verberg K, Perna G, Griez EJL (2001) A case study of the 35% CO2 challenge. In: Griez EJL, Faravelli C, Nutt D, Zohar D (eds) Anxiety disorders. John Wiley and Sons Ltd Chichester, pp 341–357

  36. Verberg K, Pols H, de Leeuw M, Griez E (1998) Reliability of the 35% carbon dioxide panic provocation challenge. Psychiat Res 78:207–214

    Article  Google Scholar 

  37. Wesseling KH, Jansen JRC, Settels JJ, Schreuder JJ (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74:2566–2573

    CAS  PubMed  Google Scholar 

  38. West JB (1974) Respiratory physiology. The Williams and Wilkins Company Baltimore

  39. Woods SW, Charney DS, Goodman WK, Heninger GR (1988) Carbon dioxide induced anxiety. Arch Gen Psychiat 45:43–52

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joey M. Kaye FRACP, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaye, J.M., Young, T.M., Mathias, C.J. et al. Neuroendocrine and behavioural responses to CO2 inhalation in central versus peripheral autonomic failure. Clin Auton Res 16, 121–129 (2006). https://doi.org/10.1007/s10286-006-0331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-006-0331-x

Key words

Navigation