Skip to main content

Advertisement

Log in

Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Malaria is a serious public health problem in many parts of the world. Early diagnosis and prompt effective treatment are required to avoid anemia, organ failure, and malaria-associated deaths. Microscopic analysis of blood samples is the preferred method for diagnosis. However, manual microscopic examination is very laborious and requires skilled health personnel of which there is a critical shortage in the developing world such as in sub-Saharan Africa. Critical shortages of trained health personnel and the inability to cope with the workload to examine malaria slides are among the main limitations of malaria microscopy especially in low-resource and high disease burden areas. We present a low-cost alternative and complementary solution for rapid malaria screening for low resource settings to potentially reduce the dependence on manual microscopic examination. We develop an image processing pipeline using a modified YOLOv3 detection algorithm to run in real time on low-cost devices. We test the performance of our solution on two datasets. In the dataset collected using a microscope camera, our model achieved 99.07% accuracy and 97.46% accuracy on the dataset collected using a mobile phone camera. While the mean average precision of our model is on par with human experts at an object level, we are several orders of magnitude faster than human experts as we can detect parasites in images as well as videos in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://air.ug/downloads/plasmodium-images.zip

  2. http://air.ug/downloads/plasmodium-phonecamera.zip

  3. https://github.com/aleju/imgaug

References

  1. WHO (2018) World malaria report 2018, https://www.who.int/malaria/media/world-malaria-report-2018/en/

  2. White NJ, Ho M: The pathophysiology of malaria. In: Advances in Parasitology, vol 31. Elsevier, 1992, pp 83–173

  3. Kwiatkowski D, Sambou I, Twumasi P, Greenwood B, Hill A, Manogue K, Cerami A, Castracane J, Brewster D: Tnf concentration in fatal cerebral, non-fatal cerebral, and uncomplicated plasmodium falciparum malaria. The Lancet 336 (8725): 1201–1204, 1990

    Article  CAS  Google Scholar 

  4. Organization W.H. (2016) Malaria microscopy quality assurance manual-version 2. World Health Organization

  5. Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA: Laboratory medicine in africa: a barrier to effective health care. Clin Infect Dis 42 (3): 377–382, 2006

    Article  Google Scholar 

  6. Moody A: Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 15 (1): 66–78, 2002

    Article  CAS  Google Scholar 

  7. Kim S, Nhem S, Dourng D, Ménard D: Malaria rapid diagnostic test as point-of-care test: study protocol for evaluating the vikia® malaria ag pf/pan. Malar J 14 (1): 114, 2015

    Article  Google Scholar 

  8. Hung J, Carpenter A: Applying faster r-cnn for object detection on malaria images. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017, pp 808–813

  9. Yang D, Subramanian G, Duan J, Gao S, Bai L, Chandramohanadas R, Ai Y: A portable image-based cytometer for rapid malaria detection and quantification. PloS one 12 (6): e0179161, 2017

    Article  Google Scholar 

  10. Pattanaik P, Swarnkar T, Sheet D: Object detection technique for malaria parasite in thin blood smear images. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017, pp 2120–2123

  11. Mehanian C, Jaiswal M, Delahunt C, Thompson C, Horning M, Hu L, McGuire S, Ostbye T, Mehanian M, Wilson B, et al: Computer-automated malaria diagnosis and quantitation using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp 116–125

  12. Quinn JA, Andama A, Munabi I, Kiwanuka FN: Automated blood smear analysis for mobile malaria diagnosis. Mobile Point-of-Care Monitors and Diagnostic Device Design 31: 115, 2014

    Google Scholar 

  13. Quinn JA, Nakasi R, Mugagga PK, Byanyima P, Lubega W, Andama A: Deep convolutional neural networks for microscopy-based point of care diagnostics. In: Machine Learning for Healthcare Conference, 2016, pp 271–281

  14. Neubeck A, Van Gool L: Efficient non-maximum suppression. In: ICPR 2006. 18th International Conference on Pattern Recognition, 2006, vol 3. IEEE, 2006, pp 850–855

  15. Redmon J, Divvala S, Girshick R, Farhadi A: You only look once: unified real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp 779–788

  16. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC: Ssd: single shot multibox detector. In: European Conference on Computer Vision. Springer, 2016, pp 21–37

  17. Girshick R (2015) Fast r-cnn, arXiv preprint arXiv:1504.08083

  18. Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection, arXiv preprint arXiv:1708.02002

  19. Zhang S, Wen L, Bian X, Lei Z, Li SZ: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp 4203–4212

  20. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement, arXiv preprint arXiv:1804.02767

  21. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A: The pascal visual object classes (voc) challenge. Int J Comput Vis 88 (2): 303–338, 2010

    Article  Google Scholar 

  22. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL: Microsoft coco: common objects in context. In: European Conference on Computer Vision. Springer, 2014, pp 740–755

  23. Chollet F (2016) Xception: deep learning with depthwise separable convolutions

  24. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation, arXiv preprint arXiv:1801.04381

  25. Hartigan JA, Wong MA: Algorithm as 136: a k-means clustering algorithm. J R Stat Soc: Ser C: Appl Stat 28 (1): 100–108, 1979

    Google Scholar 

  26. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L: Imagenet: a large-scale hierarchical image database. In: CVPR 2009. IEEE Conference on Computer Vision and Pattern Recognition, 2009. IEEE, 2009, pp 248–255

  27. Abadi M, et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, pp 265– 283

  28. Chollet F, et al (2015) Keras. https://github.com/fchollet/keras

  29. Tieleman T, Hinton G: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning 4 (2): 26–31, 2012

    Google Scholar 

  30. Salton G, McGill MJ: Introduction to modern information retrieval New York: McGraw-Hill Inc., 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson Chibuta.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chibuta, S., Acar, A.C. Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting. J Digit Imaging 33, 763–775 (2020). https://doi.org/10.1007/s10278-019-00284-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-019-00284-2

Keywords

Navigation