Skip to main content

Advertisement

Log in

Automated Segmentation and Quantification of Drusen in Fundus and Optical Coherence Tomography Images for Detection of ARMD

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (ARMD) is one of the most common retinal syndromes that occurs in elderly people. Different eye testing techniques such as fundus photography and optical coherence tomography (OCT) are used to clinically examine the ARMD-affected patients. Many researchers have worked on detecting ARMD from fundus images, few of them also worked on detecting ARMD from OCT images. However, there are only few systems that establish the correspondence between fundus and OCT images to give an accurate prediction of ARMD pathology. In this paper, we present fully automated decision support system that can automatically detect ARMD by establishing correspondence between OCT and fundus imagery. The proposed system also distinguishes between early, suspect and confirmed ARMD by correlating OCT B-scans with respective region of the fundus image. In first phase, proposed system uses different B-scan based features along with support vector machine (SVM) to detect the presence of drusens and classify it as ARMD or normal case. In case input OCT scan is classified as ARMD, region of interest from corresponding fundus image is considered for further evaluation. The analysis of fundus image is performed using contrast enhancement and adaptive thresholding to detect possible drusens from fundus image and proposed system finally classified it as early stage ARMD or advance stage ARMD. The proposed system is tested on local data set of 100 patients with100 fundus images and 6800 OCT B-scans. Proposed system detects ARMD with the accuracy, sensitivity, and specificity ratings of 98.0, 100, and 97.14%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. McHarg S, Brace N, Bishop PN, Clark SJ: Enrichment of Bruch’s Membrane from Human Donor Eyes. J Vis Exp: JoVE 105:53382, 2015

    Google Scholar 

  2. “Age-related macular degeneration-EyeWiki”, Eyewiki.aao.org, 2017. [Online]. Available: http://eyewiki.aao.org/Age related_macular_degeneration#Genetic_susceptibility. [Accessed: 02-Apr-2017]

  3. Country Health Profile, World Health Organization, Retrieved: February 22, 2017.

  4. Topouzis F, Anastasopoulos E, Augood C, Bentham GC et al.: Association of diabetes with age-related macular degeneration in the EUREYE study. Br J Opthalmol 93(8):1037–1041, 2009

    Article  CAS  Google Scholar 

  5. Age related Macular Degeneration, National Eye Institute, Retrieved: February 22, 2017.

  6. Brown MM, Brown GC, Stein JD, Roth Z, Campanella J, Beauchamp GR: Age-related macular degeneration: economic burden and value-based medicine analysis. Can J Ophthalmol/J Can Ophtalmol 40(3):277–287, 2005

    Article  Google Scholar 

  7. Smith RT, Chan JK, Nagasaki T, Sparrow JR, Barbazetto I: A method of drusen measurement based on reconstruction of fundus background reflectance. Br J Ophthalmol 89(1):87–91, 2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG: High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113(11):2054–2065, 2006

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sbeh, Z.B., Cohen, L.D., Mimoun, G., Coscas, G. and Soubrane, G., 1997, October. An adaptive contrast method for segmentation of drusen. In Image Processing, 1997. Proceedings., International Conference on (Vol. 1, pp. 255–258). IEEE.

  10. Rapantzikos, K. and Zervakis, M., 2001. Nonlinear enhancement and segmentation algorithm for detection of age-related macular degeneration (AMD) in human eye’s retina. In Image Processing, 2001. Proceedings. 2001 International Conference on (Vol. 3, pp. 1055–1058). IEEE.

  11. Rapantzikos K, Zervakis M, Balas K: Detection and segmentation of drusen deposits on human retina: Potential in the diagnosis of age-related macular degeneration. Med Image Anal 7(1):95–108, 2003

    Article  PubMed  CAS  Google Scholar 

  12. Thdibaoui, A., Rajn, A. and Bunel, P., 2000. A fuzzy logic approach to drusen detection in retinal angiographic images. In Pattern Recognition, 2000. Proceedings. 15th International Conference on (Vol. 4, pp. 748–751). IEEE.

  13. Liang, Z., Wong, D.W., Liu, J., Chan, K.L. and Wong, T.Y., 2010, August. Towards automatic detection of age-related macular degeneration in retinal fundus images. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 4100–4103). IEEE.

  14. Quellec G, Russell SR, Abràmoff MD: Optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE Trans Med Imaging 30(2):523–533, 2011

    Article  PubMed  Google Scholar 

  15. Parvathi, S.S. and Devi, N., 2007, December. Automatic drusen detection from colour retinal images. In Conference on Computational Intelligence and Multimedia Applications, 2007. International Conference on (Vol. 2, pp. 377–381). IEEE.

  16. Lee, N., Laine, A.F. and Smith, T.R., 2008, May. Learning non-homogenous textures and the unlearning problem with application to drusen detection in retinal images. In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 1215–1218). IEEE.

  17. Freund, D.E., Bressler, N. and Burlina, P., 2009, June. Automated detection of drusen in the macula. In 2009 I.E. International Symposium on Biomedical Imaging: From Nano to Macro (pp. 61–64). IEEE.

  18. Brandon, L. and Hoover, A., 2003, November. Drusen detection in a retinal image using multi-level analysis. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 618–625). Springer Berlin Heidelberg.

  19. Hassan, T., Akram, M.U., Hassan, B., Nasim, A. and Bazaz, S.A., 2015, September. Review of OCT and fundus images for detection of Macular Edema. In 2015 I.E. International Conference on Imaging Systems and Techniques (IST) (pp. 1–4). IEEE.

  20. Abdelsalam A, Del Priore L, Zarbin MA: Drusen in Age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation–induced regression. Surv Ophthalmol 44(1):1–29, 1999

    Article  PubMed  CAS  Google Scholar 

  21. Jain N, Farsiu S, Khanifar AA, Bearelly S, Smith RT, Izatt JA, Toth CA: Quantitative comparison of drusen segmented on SD-OCT versus drusen delineated on color fundus photographs. Invest Ophthalmol Vis Sci 51(10):4875–4883, 2010

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chiu SJ, Izatt JA, O'Connell RV, Winter KP, Toth CA, Farsiu S: Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest Ophthalmol Vis Sci 53(1):53–61, 2012

    Article  PubMed  Google Scholar 

  23. Farsiu S, Chiu SJ, O'Connell RV, Folgar FA, Yuan E, Izatt JA, Toth CA, Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group: Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology 121(1):162–172, 2014

    Article  PubMed  Google Scholar 

  24. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG: Optical coherence tomography. Science (New York, NY) 254(5035):1178, 1991

    Article  CAS  Google Scholar 

  25. Fujimoto JG, Drexler W, Schuman JS, Hitzenberger CK: Optical Coherence Tomography (OCT) in ophthalmology: introduction. Opt Express 17(5):3978–3979, 2009

    Article  PubMed  Google Scholar 

  26. Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed opt Express 5(10):3568–3577, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG: Optical coherence tomography of the human retina. Arch Ophthalmol 113(3):325–332, 1995

  28. Lee JY, Chiu SJ, Srinivasan P, Izatt JA, Toth CA, Farsiu S, Jaffe GJ: Fully automatic software for quantification of retinal thickness and volume in eyes with diabetic macular edema from images acquired by Cirrus and Spectralis spectral domain optical coherence tomography machines. Invest Ophthalmol Vis Sci 54(12):7595–7602, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  29. Somfai GM, Tátrai E, Laurik L, Varga B, Ölvedy V, Jiang H, Wang J, Smiddy WE, Somogyi A, DeBuc DC: Automated classifiers for early detection and diagnosis of retinopathy in diabetic eyes. BMC Bioinf 15(1):1, 2014

    Article  CAS  Google Scholar 

  30. Chen, Q., Leng, T., Kutzscher, L., Ma, J., Sisternes, L. D., Rubin, D. L., “Automated drusen segmentation and quantification in SD-OCT images”, Medical Image Analysis, Vol 17, Issue 8, December 2013.

  31. Fernández DC, Salinas HM, Puliafito CA: Automated detection of retinal layer structures on optical coherence tomography images. Opt Express 13(25):10200–10216, 2005

    Article  Google Scholar 

  32. Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express 18(18):19413–19428, 2010

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bagci AM, Shahidi M, Ansari R, Blair M, Blair NP, Zelkha R: Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 146(5):679–687, 2008

  34. Chiu SJ, Allingham MJ, Mettu PS, Cousins SW, Izatt JA, Farsiu S: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed opt Express 6(4):1172–1194, 2015

  35. Rossant, F., Ghorbel, I., Bloch, I., Paques, M. and Tick, S., 2009, June. Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures. In 2009 I.E. International Symposium on Biomedical Imaging: From Nano to Macro (pp. 1370–1373). IEEE.

  36. Yang Q, Reisman CA, Wang Z, Fukuma Y, Hangai M, Yoshimura N, Tomidokoro A, Araie M, Raza AS, Hood DC, Chan K: Automated layer segmentation of macular OCT images using dual-scale gradient information. Opt Express 18(20):21293–21307, 2010

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV: Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans Med Imaging 30(2):484–496, 2011

    Article  PubMed  Google Scholar 

  38. Wilkins GR, Houghton OM, Oldenburg AL: Automated segmentation of intraretinal cystoid fluid in optical coherence tomography. IEEE Trans Biomed Eng 59(4):1109–1114, 2012

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huang Y, Danis RP, Pak JW, Luo S, White J, Zhang X, Narkar A, Domalpally A: Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema. PLoS One 8(12):e82922, 2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kafieh R, Rabbani H, Kermani S: A review of algorithms for segmentation of optical coherence tomography from retina. J Med Signals Sens 3(1):45–60, 2013

    PubMed  PubMed Central  Google Scholar 

  41. Abhishek, A.M., Berendschot, T.T., Rao, S.V. and Dabir, S., 2014, December. Segmentation and analysis of retinal layers (ILM & RPE) in Optical Coherence Tomography images with Edema. In Biomedical Engineering and Sciences (IECBES), 2014 I.E. Conference on (pp. 204–209). IEEE.

  42. Hassan B, Raja G, Hassan T, Akram MU: Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images. JOSA A 33(4):455–463, 2016

    Article  PubMed  Google Scholar 

  43. Syed AM, Hassan T, Akram MU, Naz S, Khalid S: Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces. Elsevier Comput Methods Programs Biomed 137:1–10, 2016

    Article  Google Scholar 

  44. Cortes C, Vapnik V: Support vector machine. Mach Learn 20(3):273–297, 1995

    Google Scholar 

  45. Sezgin M: Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168, 2004

  46. Khalid, S., Akram, M. and Khalil, T. (2017) Hybrid textural feature set based automated diagnosis system for Age Related Macular Degeneration using fundus images. 2017 International Conference on Communication, Computing and Digital Systems (C-CODE)

Download references

Funding

This study is sponsored by IGNITE formally known as National ICT R&D fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Usman Akram.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, S., Akram, M.U., Hassan, T. et al. Automated Segmentation and Quantification of Drusen in Fundus and Optical Coherence Tomography Images for Detection of ARMD. J Digit Imaging 31, 464–476 (2018). https://doi.org/10.1007/s10278-017-0038-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-017-0038-7

Keywords

Navigation