Skip to main content
Log in

Comparison of Reconstruction Algorithms for Decreasing the Exposure Dose During Digital Tomosynthesis for Arthroplasty: a Phantom Study

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

To explore the possibility of decreasing the radiation dose during digital tomosynthesis (DT) for arthroplasty, we compared the image qualities of several reconstruction algorithms, such as filtered back projection (FBP) and two iterative reconstruction (IR), methods maximum likelihood expectation maximization (MLEM) and the simultaneous iterative reconstruction technique (SIRT) under different radiation doses. The three algorithms were implemented using a DT system and experimentally evaluated by contrast-to-noise ratio (CNR), artifact spread function (ASF), and power spectrum measurements on a prosthesis phantom. The CNR and ASF data were statistically analyzed by a one-way analysis of variance. The effectiveness of each technique for enhancing the visibility of the prosthesis phantom was quantified by the CNR (reference dose vs. 20 % reduced dose in FBP, P = 0.62; reference vs. 37 % reduced dose in FBP, P = 0.16; reference vs. 55 % reduced dose in FBP, P < 0.05; reference vs. 20 % reduced dose in IR, P = 0.92; reference vs. 37 % reduced dose in IR, P = 0.40; reference vs. 55 % reduced dose in IR, P < 0.05) and ASF (reference dose vs. 20 % reduced dose in FBP, P = 0.25; reference vs. 37 and 55 % reduced dose in FBP, P < 0.05; reference vs. 20 % reduced dose in IR, P = 0.16; reference vs. 37 and 55 % reduced dose in IR, P < 0.05). The power spectra under the reference and reduced doses are equivalent. In this phantom study, the radiation dose of the reference dose could be decreased by 20 % with FBP and IR for consideration of common factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ziedses des Plante BG: Eine neue methode zur differenzierung in der roentgenographie (planigraphie). Acta Radiol 13:182–192, 1932

    Article  Google Scholar 

  2. Miller ER, McCurry EM, Hruska B: An infinite number of laminagrams from a finite number of radiographs. Radiology 98:249–255, 1971

    Article  CAS  PubMed  Google Scholar 

  3. Grant DG: Tomosynthesis. A three-dimensional radiographic imaging technique. IEEE Trans Biomed Eng 19:20–28, 1972

    Article  CAS  PubMed  Google Scholar 

  4. Baily NA, Lasser EC, Crepeau RL: Electrofluoro-plangigraphy. Radiology 107:669–671, 1973

    Article  CAS  PubMed  Google Scholar 

  5. Kruger RA, Nelson JA, Ghosh-Roy D, Miller FJ, Anderson RE, Liu PY: Dynamic tomographic digital subtraction angiography using temporal filteration. Radiology 147:863–867, 1983

    Article  CAS  PubMed  Google Scholar 

  6. Sone S, Kasuga T, Sakai S, Aoki J, Izuno I, Tanizaki Y, Shigeta H, Shibata K: Development of a high-resolution digital tomosynthesis system and its clinical application. Radiographics 11:807–822, 1991

    Article  CAS  PubMed  Google Scholar 

  7. Sone S, Kasuga T, Sakai F, Kawai T, Oguchi K, Hirano H, Li F, Kubo K, Honda T, Hniuda M, Takemura K, Hosoba M: Image processing in the digital tomosynthesis for pulmonary imaging. Eur Radiol 5:96–101, 1995

    Article  Google Scholar 

  8. Machida H, Yuhara T, Mori T, Ueno E, Moribe Y, Sabol JM: Optimizing parameters for flat-panel detector digital tomosynthesis. Radiographics 30:549–562, 2010

    Article  PubMed  Google Scholar 

  9. Vikgren J, Zachrisson S, Svalkvist A, Johnsson AA, Boijsen M, Flinck A, Kheddache S, Båth M: Comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: human observer study of clinical cases. Radiology 249:1034–1041, 2008

    Article  PubMed  Google Scholar 

  10. Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, Izadi M, Jebsen IN, Jahr G, Krager M, Niklason LT, Hofvind S, Gur D: Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 267:47–56, 2013

    Article  PubMed  Google Scholar 

  11. Stiel G, Stiel LG, Klotz E, Nienaber CA: Digital flashing tomosynthesis: a promising technique for angiographic screening. IEEE Trans Med Imaging 12:314–321, 1993

    Article  CAS  PubMed  Google Scholar 

  12. Duryea J, Dobbins JT, Lynch JA: Digital tomosynthesis of hand joints for arthritis assessment. Med Phys 30:325–33, 2003

    Article  CAS  PubMed  Google Scholar 

  13. Niklason LT, Christian BT, Niklason LE, Kopans DB, Castleberry DE, Opsahl-Ong BH, Landberg CE, Slanetz PJ, Giardino AA, Moore R, Albagli D, DeJule MC, Fitzgerald PF, Fobare DF, Giambattista BW, Kwasnick RF, Liu J, Lubowski SJ, Possin GE, Richotte JF, Wei CY, Wirth RF: Digital tomosynthesis in breast imaging. Radiology 205:399–406, 1994

    Article  Google Scholar 

  14. Dobbins III, JT, Godfrey DJ: Digital X-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 48:R65–106, 2003

    Article  PubMed  Google Scholar 

  15. Gomi T, Hirano H: Clinical potential of digital linear tomosynthesis imaging of total joint arthroplasty. J Digit Imaging 21:312–322, 2008

    Article  PubMed  Google Scholar 

  16. Gomi T, Hirano H, Umeda T: Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction. Comput Med Imaging Graph 33:257–274, 2009

    Article  Google Scholar 

  17. White LM, Buckwalder KA: Technical considerations: CT and MR imaging in the postoperative orthopaedic patient. Semin Musculoskelet Radiol 6:5–17, 2002

    Article  PubMed  Google Scholar 

  18. Gomi T: Comparison of metal artifact in digital tomosynthesis and computed tomography for evaluation of phantoms. J Biomed Sci Eng 6:722–731, 2013

    Article  Google Scholar 

  19. Gordon R, Bender R, Hermen GT: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481, 1970

    Article  CAS  PubMed  Google Scholar 

  20. Wu T, Stewart A, Stanton M, McCauley T, Phillips W, Kopans DB, et al: Tomographic mammography using a limited number of low-dose cone-beam projection images. Med Phys 30:365–380, 2003

    Article  PubMed  Google Scholar 

  21. Tapiovaara M, Siiskonen T. A Monte Carlo program for calculating patient doses in medical X-ray examinations, 2nd edition. Report No. STUK-A231 STUK 2008; Helsinki, Finland

  22. Bleuet P, Guillemaud R, Magnin I, Desbat L: An adapted fan volume sampling scheme for 3D algebraic reconstruction in linear tomosynthesis. IEEE Trans Nucl Sci 3:1720–1724, 2001

    Google Scholar 

  23. Mathworks Inc 2014; http://www.mathworks.com/products/matlab/

  24. Rangayyan RM: Biomedical Image Analysis. CRC Press, Florida, 2000, pp 612–621

    Google Scholar 

Download references

Acknowledgments

We wish to thank Mr. Kazuaki Suwa at the Department of Radiology, Dokkyo Medical University Koshigaya Hospital, for the support on the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Gomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomi, T., Sakai, R., Goto, M. et al. Comparison of Reconstruction Algorithms for Decreasing the Exposure Dose During Digital Tomosynthesis for Arthroplasty: a Phantom Study. J Digit Imaging 29, 488–495 (2016). https://doi.org/10.1007/s10278-016-9876-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-016-9876-y

Keywords

Navigation