Skip to main content

Advertisement

Log in

An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

A rapid and highly accurate diagnostic tool for distinguishing benign tumors from malignant ones is required owing to the high incidence of breast cancer. Although various computer-aided diagnosis (CAD) systems have been developed to interpret ultrasound images of breast tumors, feature selection and the setting of parameters are still essential to classification accuracy and the minimization of computational complexity. This work develops a highly accurate CAD system that is based on a support vector machine (SVM) and the artificial immune system (AIS) algorithm for evaluating breast tumors. Experiments demonstrate that the accuracy of the proposed CAD system for classifying breast tumors is 96.67 %. The sensitivity, specificity, PPV, and NPV of the proposed CAD system are 96.67, 96.67, 95.60, and 97.48 %, respectively. The receiver operator characteristic (ROC) area index A z is 0.9827. Hence, the proposed CAD system can reduce the number of biopsies and yield useful results that assist physicians in diagnosing breast tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30, 2013

    Article  PubMed  Google Scholar 

  2. Sivaramakrishna R, Gordon R: Detection of breast cancer at a smaller size can reduce the likelihood of metastatic spread: a quantitative analysis. Acad Radiol 4(1):8–12, 1997

    Article  CAS  PubMed  Google Scholar 

  3. Chen DR, Hsiao YH: Computer-aided diagnosis in breast ultrasound. J Med Ultrasound 16(1):46–56, 2008

    Article  Google Scholar 

  4. Zhou Y: Ultrasound diagnosis of breast cancer. J Med Imaging Health Inform 3(2):157–170, 2013

    Article  Google Scholar 

  5. Lodwick GS: Computer diagnosis in radiology. J Mich State Med Soc 61:1239–1242, 1962

    CAS  PubMed  Google Scholar 

  6. Drukker K, Sennett CA, Giger ML: Automated method for improving system performance of computer-aided diagnosis in breast ultrasound. IEEE Trans Med Imaging 28(1):122–128, 2009

    Article  PubMed  Google Scholar 

  7. Chang RF, Wu WJ, Moon WK, Chen DR: Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat 89(2):179–185, 2005

    Article  PubMed  Google Scholar 

  8. Chen DR, Huang YL, Lin SH: Computer-aided diagnosis with textural features for breast lesions in sonograms. Comput Med Imaging Graph 35(3):220–226, 2011

    Article  PubMed  Google Scholar 

  9. Moon WK, Chang SC, Huang CS, Chang RF: Breast tumor classification using fuzzy clustering for breast elastography. Ultrasound Med Biol 37(5):700–708, 2011

    Article  PubMed  Google Scholar 

  10. Chen ST, Hsiao YH, Huang YL, Kuo SJ, Tseng HS, Wu HK, Chen DR: Comparative analysis of logistic regression, support vector machine and artificial neural network for the differential diagnosis of benign and malignant solid breast tumors by the use of three-dimensional power Doppler imaging. Korean J Radiol 10(5):464–471, 2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tseng HS, Wu HK, Chen ST, Kuo SJ, Huang YL, Chen DR: Speckle reduction imaging of breast ultrasound does not improve the diagnostic performance in morphology-based CAD System. J Clin Ultrasound 40(1):1–6, 2012

    Article  PubMed  Google Scholar 

  12. Tan T, Platel B, Huismam H, Sánchez CI, Mus R, Karssemeijer N: Computer-aided lesion diagnosis in automated 3-D breast ultrasound using coronal spiculation. IEEE Trans Med Imaging 31(5):1034–1042, 2012

    Article  PubMed  Google Scholar 

  13. Wu WJ, Lin SW, Moon WK: Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images. Comput Med Imaging Graph 36(8):627–633, 2012

    Article  PubMed  Google Scholar 

  14. Han J, Kamber M: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco, 2007

    Google Scholar 

  15. Montani S: Exploring new roles for case based reasoning in heterogeneous AI system for medical decision support. Appl Intell 28(3):275–285, 2008

    Article  Google Scholar 

  16. Andrews PS, Timmis J: Inspiration for the next generation of artificial immune systems. Artificial Immune Systems. Springer, Berlin, 2005

    Google Scholar 

  17. Latifoǧlu F, Kodaz H, Kara S, Güneş S: Medical application of artificial immune recognition system (AIRS): diagnosis of atherosclerosis from carotid artery Doppler signals. Comput Biol Med 37(8):1092–1099, 2007

    Article  PubMed  Google Scholar 

  18. Lin SW, Chen SC: Parameter tuning, feature selection and weight assignment of features for case-based reasoning by artificial immune system. Appl Soft Comput 11(8):5042–5052, 2011

    Article  Google Scholar 

  19. Kuo RJ, Tseng WL, Tien FC, Warren L: Application of an artificial immune system-based fuzzy neural network to a RFID-based positioning system. Comput Ind Eng 63(4):943–956, 2012

    Article  Google Scholar 

  20. Chen GY, Xie WF: Pattern recognition with SVM and dual-tree complex wavelets. Image Vis Comput 25(6):960–966, 2007

    Article  Google Scholar 

  21. Huang YL, Wang KL, Chen DR: Diagnosis of breast tumors with ultrasonic analysis using support vector machines. Neural Comput & Applic 15(2):164–169, 2006

    Article  Google Scholar 

  22. Chang RF, Wu WJ, Moon WK, Chou YH, Chen DR: Support vector machines for diagnosis of breast tumors on US images. Acad Radiol 10(2):189–197, 2003

    Article  PubMed  Google Scholar 

  23. Wang XY, Yang HY, Cui CY: An SVM-based robust digital image watermarking against desynchronization attacks. Signal Process 88(9):2193–2205, 2008

    Article  Google Scholar 

  24. Wong WT, Hsu SH: Application of SVM and ANN for image retrieval. Eur J Oper Res 173(3):938–950, 2006

    Article  Google Scholar 

  25. Vapnik VN: The Nature of Statistical Learning Theory. Springer, New York, 1995

    Book  Google Scholar 

  26. Deguchi K, Izumitani T, Hontani H: Detection and enhancement of line structures in an image by anisotropic diffusion. Pattern Recogn Lett 23(12):1399–1405, 2002

    Article  Google Scholar 

  27. Czerwinski RN, Jones DL, O’Brien WD: Detection of lines and boundaries in speckle images—application to medical ultrasound. IEEE Trans Med Imaging 18(2):126–136, 1999

    Article  CAS  PubMed  Google Scholar 

  28. Blayvas I, Bruckstein A, Kimmel R: Efficient computation of adaptive threshold surfaces for image binarization. Pattern Recognit 39(1):89–101, 2006

    Article  Google Scholar 

  29. Zhou H, Yuan Y, Lin F, Liu: Level set image segmentation with Bayesian analysis. Neurocomputing 71(10):1994–2000,2008

  30. Fabiszewska E, Grabska I, Jankowska K, Wesolowska E, Bulski W: Comparison of results from quality control of physical parameters and results from clinical evaluation of mammographic images for the mammography screening facilities in Poland. Radiat Prot Dosim 147(1–2):206–209, 2011

    Article  CAS  Google Scholar 

  31. Liao Y, Fang SC, Nuttle HLW: A neural network model with bounded-weights for pattern classification. Comput Oper Res 31(9):1411–1426, 2004

    Article  Google Scholar 

  32. Lin HT, Lin CJ: A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Neural Comput 3:1–32, 2003

    Google Scholar 

  33. Müller KR, Mike S, Rätsch G, Tsuda K, Schölkopf B: An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201, 2001

    Article  PubMed  Google Scholar 

  34. Chang YW, Hsieh CJ, Chang KW, Ringgaard M, Lin CJ: Training and testing low-degree polynomial data mappings via linear SVM. J Mach Learn Res 11:1471–1490, 2010

    Google Scholar 

  35. Pardo M, Sberveglieri G: Classification of electronic nose data with support vector machines. Sensors Actuators B Chem 107(2):730–737, 2005

    Article  CAS  Google Scholar 

  36. Bergstra J, Bengio Y: Random search for hyper-parameter optimization. J Mach Learn Res 13(1):281–305, 2012

    Google Scholar 

  37. Li Z, He C: Optimal scheduling-based RFID reader-to-reader collision avoidance method using artificial immune system. Appl Soft Comput 13(5):2557–2568, 2013

    Article  Google Scholar 

  38. Lin SW, Ying KC: Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm. Omega 41(2):383–389, 2013

    Article  Google Scholar 

  39. Shang R, Qi L, Jiao L, Stolkin R, Li Y: Change detection in SAR images by artificial immune multi-objective clustering. Eng Appl Artif Intell 31:53–67, 2014

    Article  Google Scholar 

  40. Ying KC, Lin SW: Efficient wafer sorting scheduling using a hybrid artificial immune system. J Oper Res Soc 65(2):169–179, 2014

    Google Scholar 

  41. Chang CC, Lin CJ: LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27, 2011

    Article  Google Scholar 

  42. Salzberg SL: On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min Knowl Disc 1(3):317–328, 1997

    Article  Google Scholar 

Download references

Acknowledgements

The first author of this paper is grateful to the Ministry of Science and Technology of the Republic of China (Taiwan) for financially supporting this research [grant number NSC99-2221-E-182-041]. The second author is grateful to the Ministry of Science and Technology of the Republic of China (Taiwan) and the Linkou Chang Gung Memorial Hospital for financially supporting this research [grant numbers MOST103-2410-H-182-006 and CARPD3B0012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Wei Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WJ., Lin, SW. & Moon, W.K. An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images. J Digit Imaging 28, 576–585 (2015). https://doi.org/10.1007/s10278-014-9757-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-014-9757-1

Keywords

Navigation