Skip to main content
Log in

Biothérapies par voie sous-cutanée : modalités d’absorption et implications cliniques

Subcutaneous dual-therapies: Methods of absorption and clinical implications

  • Mise au Point / Update
  • Published:
Oncologie

Résumé

L’utilisation de la voie sous-cutanée (SC) pour l’administration des médicaments injectables permet une amélioration de la qualité de vie des patients et facilite le développement des alternatives à l’hospitalisation. Cependant, l’utilisation de cette voie a longtemps été limitée à certaines molécules, car elle nécessite de franchir la matrice extracellulaire (MEC) qui est une barrière à la diffusion des fluides dans l’espace SC. Après la découverte de l’hyaluronidase améliorant la diffusion des molécules, une version recombinante (rHuPH20) a été développée. Associé au médicament, le rHuPH20 a permis d’élargir l’utilisation de cette voie à de plus grosses molécules. Lors du développement des anticorps monoclonaux anticancéreux, la posologie était initialement adaptée à partir de critères tels que le poids du patient, permettant, en théorie, une meilleure exposition du patient au médicament. Cependant, de nombreux auteurs rapportent qu’une administration par dose fixe est globalement plus pertinente pour la majorité des anticorps monoclonaux. Dans cette revue, nous détaillons l’exemple du trastuzumab (Herceptin®), traitement standard du cancer du sein HER2 amplifié ou surexprimé, habituellement administré par voie intraveineuse (IV). Plusieurs travaux ont évalué l’intérêt de la voie SC (poids du patient) associée au rHuPH20 par rapport à la voie IV (poids du patient). D’autres travaux ont comparé une dose fixe de trastuzumab par voie SC (+ rHuPH20) à une dose adaptée selon le poids de la patiente et injectée en IV. Globalement, les différentes modalités d’administration semblent équivalentes en termes d’efficacité (néoadjuvant), de pharmacocinétique (PK) [aire sous la courbe, concentration résiduelle] et de toxicité.

Abstract

Subcutaneous (SC) administration of injectable medications allows an improved quality of life of patients and contributes to the development of alternatives to hospitalization. However, this route has long been limited to certain drugs because it requires the crossing of the extracellular matrix which is a barrier to the diffusion of fluids in the SC space. After the discovery of hyaluronidase, which improves the diffusion of molecules, a recombinant version (rHuPH20) has been developed. In association with the medication, rHuPH20 allowed to extend the use of the SC route to bigger molecules. When anticancer monoclonal antibodies were developed, dosage was initially adjusted based on criteria such as the patient’s weight, thereby leading theoretically to a better patient’s exposure to the drug. However, numerous authors reported that a fixed-dose administration was globally more relevant for the majority of monoclonal antibodies. In this review, we detail the example of the trastuzumab (Herceptin®) as standard treatment of amplified or overexpressed HER2 breast cancer, usually administered intravenously (IV). Several studies assessed the benefit of the SC route (patient’s weight) associated with rHuPH20 when compared with an IV administration (patient’s weight). Others compared a SC fixed dose of trastuzumab (+ rHuPH20) to an IV dose adapted to the patient’s weight. Overall, the different administration modalities seem equivalent in terms of efficacy (neoadjuvant), pharmacokinetics (including area under the curve and residual concentration) and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Dychter SS, Gold DA, Haller MF (2012) Subcutaneous drug delivery: a route to increased safety, patient satisfaction, and reduced costs. J Infus Nurs 35:154–60

    Article  PubMed  Google Scholar 

  2. Fasth A, Nystrom J (2008) Quality of life and health-care resource utilization among children with subcutaneous human immunoglobulin. J Clin Immunol 28:370–8

    Article  CAS  PubMed  Google Scholar 

  3. Gardulf A, Nicolay U, Math D, et al. (2004) Children and adults with primary antibody deficiencies gain quality of life by subcutaneous igG self-infusions at home. J Allergy Clin Immunol 114:936–42

    Article  CAS  PubMed  Google Scholar 

  4. Prettyman J (2005) Subcutaneous or intramuscular? Confronting a parenteral administration dilemma. Medsurg Nurs 14:93–8

    PubMed  Google Scholar 

  5. Bruton OC (1952) Agammaglobulinemia. Pediatrics 9:722–8

    CAS  PubMed  Google Scholar 

  6. Lancerotto L, Stecco C, Macchi V, et al. (2011) Layers of the abdominal wall: anatomical investigation of subcutaneous tissue and superficial fascia. Surg Radiol Anat 33:835–42

    Article  PubMed  Google Scholar 

  7. Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 2:167–9

    Article  Google Scholar 

  8. Jensen JD, Jensen LW, Madsen JK (1994) The pharmacokinetics of recombinant human erythropoietin after subcutaneous injection at different sites. Eur J Clin Pharmacol 46:333–7

    Article  CAS  PubMed  Google Scholar 

  9. Patel TV, Robinson K, Singh AK (2007) Is it time to reconsider subcutaneous administration of epoetin? Nephrol News Issues 21:57–9

    PubMed  Google Scholar 

  10. Patel HM, Boodle KM, Vaughan-Jones R (1984) Assessment of the potential uses of liposomes for lymphoscintigrapy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes. Biochim Biophys Acta 801:76–86

    CAS  Google Scholar 

  11. Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–58

    Article  CAS  PubMed  Google Scholar 

  12. Law B, Tung CH (2009) Proteolysis: a biological process adapted in drug delivery, therapy, and imaging. Bioconjug Chem 20:1683–95

    Article  CAS  PubMed  Google Scholar 

  13. Kagan L, Turner MR, Balu-Lyer SV, et al (2012) Subcutaneous absorption of monoclonal antibodies: role of dose, site of injection, and injection volume on rituximab pharmacokinetics in rats. Pharm Res 29:490–9

    Article  CAS  PubMed  Google Scholar 

  14. Frost GI (2007) Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv 4:427–40

    Article  CAS  PubMed  Google Scholar 

  15. Richter WF, Bhansali SG, Morris ME (2012) Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J 14:559–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Baker SD, Verweij J, Rowinski EK, et al. (2002) Role of body surface area in dosing of investigational anticancer agents in adults, 1991–2001. J Natl Cancer Inst 24:1883–8

    Article  Google Scholar 

  17. Bai S, Jorga K, Xin Y, et al. (2012) A guide to racional doping of monoclonal antibodies. Clin Pharmacokinet 2:119–36

    Article  Google Scholar 

  18. Dirks NL, Meibohm B (2010) Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49:633–59

    Article  CAS  PubMed  Google Scholar 

  19. Wang DD, Zhang S, Zhao H, et al. (2009) Fixed dosing versus body-size based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol 49:1012–24

    Article  CAS  PubMed  Google Scholar 

  20. Wang DD, Zhang S, Zhao H, et al. (2012) Fixed dosing versus body-size based dosing of therapeutics peptides and protein in adults. J Clin Pharmacol 52:18–28

    Article  PubMed  Google Scholar 

  21. Misbah S, Sturzenegger MH, Borte M, et al. (2009) Subcutaneous immunoglobulin: opportunities and outlook. Clin Exp Immunol 1:51–9

    Article  Google Scholar 

  22. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–32

    CAS  PubMed  Google Scholar 

  23. Hamizi S, Freyer G, Bakrin N, et al. (2013) Subcutaneous trastuzumab: development of a new formulation for treatment of HER2-positive early breast cancer. Oncotargets Ther 6:89–94

    CAS  Google Scholar 

  24. Wynne C, Harvey V, Schwabe C, et al. (2013) Comparaison of subcutaneous and intravenous administration of trastuzumab: a phase I/Ib tral in healthy male volunteers and patients with HER2-positive breast cancer. J Clin Pharmacology 53:192–201

    Article  Google Scholar 

  25. Ismael G, Hegg R, Muehlbauer S, et al. (2012) Subcutaneous versus intravenous administration of (neo)adjuvant trastuzumab in patients with HER-positive, clinical stage I-III breast cancer (Hannah study): a phase 3, open-label, multicentre, randomised trial. Lancet Oncol 13:869–78

    Article  CAS  PubMed  Google Scholar 

  26. Pivot X, Gligorov J, Muller V, et al. (2013) Preference for subcutaneous or intravenous administration of trastuzumab in patients with HER2-positive early breast cancer (PrefHer): an open-label randomised study. Lancet Oncol 19:962–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Pinguet or G. Milano.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinguet, F., Milano, G. Biothérapies par voie sous-cutanée : modalités d’absorption et implications cliniques. Oncologie 16, 393–400 (2014). https://doi.org/10.1007/s10269-014-2445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-014-2445-4

Mots clés

Keywords

Navigation