Skip to main content

Advertisement

Log in

Antibacterial effect of silver nanoparticles mixed with calcium hydroxide or chlorhexidine on multispecies biofilms

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The purpose is to evaluate the antibacterial effects of the silver nanoparticles (AgNPs) (Nanografi, METU Teknokent, Ankara, Turkey) mixed with calcium hydroxide (Ca(OH)2) (Ultracal XS, Ultradent, St Louis, US) or chlorhexidine gel (CHX) (Gluco-Chex, Cerkamed, Stalowa Wola, Poland) against a multispecies biofilm, by confocal laser scanning microscopy (CLSM) and culture-based analysis. Dentine blocks were inoculated with Enterococcus faecalis, Streptococcus mutans, Lactobacillus acidophilus and Actinomyces naeslundii for 1 week. Infected dentine blocks were randomly divided into groups according to medication; saline solution (SS), Ca(OH)2, Ca(OH)2 + AgNP, 2%CHX gel and 2%CHX gel + AgNP and time of application: 1 and 7 days (all groups, n = 5). Bacterial samples were collected before and after medication to quantify the bacterial load. Biofilm elimination was quantitatively analyzed by Live/Dead BacLight Bacterial Viability staining and CLSM. The addition of AgNPs to Ca(OH)2 increased the effectiveness of medicament in terms of bacterial reduction in both application times (1 and 7 days) (p < 0.05: ANOVA, Tukey’s test) according to culture-based analysis. The CLSM images revealed that mixture of AgNP with CHX killed significantly more bacteria when compared with all other medicaments at 1- and 7-day application times (p < 0.05 and p > 0.05, respectively: Kruskal–Wallis, Dunn post hoc tests). The efficacy of Ca(OH)2 mixed with AgNPs was superior to Ca(OH)2 used alone in both application times (p < 0.05) according to CLSM analysis. The present study put forth the potential use of AgNPs mixed with Ca(OH)2 or CHX on multispecies (Enterococcus faecalis, Streptococcus mutans, Lactobacillus acidophilus and Actinomyces naeslundii) biofilm in 1 and 7day application periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sakamoto M, Siqueira JF Jr, Rocas IN, Benno Y. Bacterial reduction and persistenceafter endodontic treatment procedures. Oral Microbiol Immunol. 2007;22:19–23.

    Article  PubMed  Google Scholar 

  2. Ricucci D, Siqueira JF Jr. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod. 2010;36:1277–88.

    Article  PubMed  Google Scholar 

  3. Ricucci D, Siqueira JF Jr, Bate AL, Pitt Ford TR. Histologic investigation of root canal-treated teeth with apical periodontitis: a retrospective study from twenty-four patients. J Endod. 2009;35:493–502.

    Article  PubMed  Google Scholar 

  4. Abbott PV. Endodontics—current and future. J Conserv Dent. 2012;15:202–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kishen A. Advanced therapeutic options for endodontic biofilms. Endod Top. 2010;22:99–123.

    Article  Google Scholar 

  6. Byström A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res. 1981;89:321–8.

    PubMed  Google Scholar 

  7. Portenier I, Haapasalo H, Rye A, Waltimo T, Ørstavik D, Haapasalo M. Inactivation of root canal medicaments by dentine, hydroxylapatite and bovine serum albumin. Int Endod J. 2001;34:184–8.

    Article  PubMed  Google Scholar 

  8. Haapasalo HK, Sirén EK, Waltimo TM, Ørstavik D, Haapasalo MP. Inactivation of local root canal medicaments by dentine: an in vitro study. Int Endod J. 2000;33:126–31.

    Article  PubMed  Google Scholar 

  9. Haapasalo M, Qian W, Portenier I, Waltimo T. Effects of dentin on the antimicrobial properties of endodontic medicaments. J Endod. 2007;33:917–25.

    Article  PubMed  Google Scholar 

  10. Evans M, Davies JK, Sundqvist G, Figdor D. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int Endod J. 2002;35:221–8.

    Article  PubMed  Google Scholar 

  11. Siqueira JF Jr, de Uzeda M. Influence of different vehicles on the antibacterial effects of calcium hydroxide. J Endod. 1998;24:663–5.

    Article  PubMed  Google Scholar 

  12. Turk BT, Sen BH, Ozturk T. In vitro antimicrobial activity of calcium hydroxide mixed with different vehicles against Enterococcus faecalis and Candida albicans. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:297–301.

    Article  PubMed  Google Scholar 

  13. Delgado RJ, Gasparoto TH, Sipert CR, Pinheiro CR, Moraes IG, Garcia RB, Bramante CM, Campanelli AP, Bernardineli N. Antimicrobial effects of calcium hydroxide and chlorhexidine on Enterococcus faecalis. J Endod. 2010;36:1389–93.

    Article  PubMed  Google Scholar 

  14. Afkhami F, Pourhashemi SJ, Sadegh M, Salehi Y, Fard MJ. Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis. J Dent. 2015;43:1573–9.

    Article  PubMed  Google Scholar 

  15. Samiei M, Aghazadeh M, Lotfi M, Shakoei S, Aghazadeh Z, Vahid Pakdel SM. Antimicrobial efficacy of mineral trioxide aggregate with and without silver nanoparticles. Iran Endod J. 2013;8:166–70.

    PubMed  PubMed Central  Google Scholar 

  16. Javidi M, Afkhami F, Zarei M, Ghazvini K, Rajabi O. Efficacy of a combined nanoparticulate/calcium hydroxide root canal medication on elimination of Enterococcus faecalis. Aust Endod J. 2014;40:61–5.

    Article  PubMed  Google Scholar 

  17. Fuss Z, Mizrahi A, Lin S, Cherniak O, Weiss EI. A laboratory study of the effect of calcium hydroxide mixed with iodine or electrophoretically activated copper on bacterial viability in dentinal tubules. Int Endod J. 2002;35:522–6.

    Article  PubMed  Google Scholar 

  18. Gomes BP, Ferraz CC, Vianna ME, Berber VB, Teixeira FB, Souza-Filho FJ. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int Endod J. 2001;34:424–8.

    Article  PubMed  Google Scholar 

  19. Portenier I, Haapasalo H, Orstavik D, Yamauchi M, Haapasalo M. Inactivation of the antibacterial activity of iodine potassium iodide and chlorhexidine digluconate against Enterococcus faecalis by dentin, dentin matrix, type-I collagen, and heat-killed microbial whole cells. J Endod. 2002;28:634–7.

    Article  PubMed  Google Scholar 

  20. Chávez de Paz LE, Bergenholtz G, Svensäter G. The effects of antimicrobials on endodontic biofilm bacteria. J Endod. 2010;36:70–7.

    Article  PubMed  Google Scholar 

  21. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  PubMed  Google Scholar 

  22. Königs AM, Flemming HC, Wingender J. Nanosilver induces a non-culturable but metabolically active state in Pseudomonas aeruginosa. Front Microbiol. 2015;5(6):395.

    Google Scholar 

  23. Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod. 2016;42:1417–26.

    Article  PubMed  Google Scholar 

  24. Chávez-Andrade GM, Tanomaru-Filho M, Rodrigues EM, et al. Cytotoxicity, genotoxicity and antibacterial activity of poly(vinyl alcohol)-coated silver nanoparticles and farnesol as irrigating solutions. Arch Oral Biol. 2017;84:89–93.

    Article  PubMed  Google Scholar 

  25. Chávez-Andrade GM, Tanomaru-Filho M, Basso Bernardi MI, de Toledo LR, Faria G, Guerreiro-Tanomaru JM. Antimicrobial and biofilm anti-adhesion activities of silver nanoparticles and farnesol against endodontic microorganisms for possible application in root canal treatment. Arch Oral Biol. 2019;107:104481.

    Article  PubMed  Google Scholar 

  26. Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  PubMed  Google Scholar 

  27. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012;8:37–45.

    Article  PubMed  Google Scholar 

  28. Del Carpio-Perochena A, Kishen A, Felitti R, et al. Antibacterial properties of chitosan nanoparticles and propolis associated with calcium hydroxide against single- and multispecies biofilms: an in vitro and in situ study. J Endod. 2017;43:1332–6.

    Article  PubMed  Google Scholar 

  29. Ma J, Wang Z, Shen Y, Haapasalo M. A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy. J Endod. 2011;37:1380–5.

    Article  PubMed  Google Scholar 

  30. Bergenholtz G, Torneck C, Kishen A. Inter-appointment medication with calcium hydroxide in routine cases of root canal therapy. In: Sedgley CM, Kishen A, editors. Chávez de Paz L, The root canal biofilm. Berlin: Springer; 2015. p. 303–25.

    Chapter  Google Scholar 

  31. Hou X, Fu H, Han Y, Xue Y, Li C. Analysis of transcriptome in enterococcus faecalis treated with silver nanoparticles. J Nanosci Nanotechnol. 2020;20:1046–55.

    Article  PubMed  Google Scholar 

  32. Rodrigues CT, de Andrade FB, de Vasconcelos LRSM, Midena RZ, Pereira TC, Kuga MC, Duarte MAH, Bernardineli N. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int Endod J. 2018;51(8):901–11.

    Article  PubMed  Google Scholar 

  33. Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014;40:285–90.

    Article  PubMed  Google Scholar 

  34. Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod. 2008;34:1515–20.

    Article  PubMed  Google Scholar 

  35. Shrestha A, Shi Z, Neoh KG, Kishen A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod. 2010;36:1030–5.

    Article  PubMed  Google Scholar 

  36. Zheng T, Huang X, Chen J, et al. A liquid crystalline precursor incorporating chlorhexidine acetate and silver nanoparticles for root canal disinfection. Biomater Sci. 2018;6:596–603.

    Article  PubMed  Google Scholar 

  37. Mehta S, Verma P, Tikku AP, Chandra A, Bains R, Banerjee G. Comparative evaluation of antimicrobial efficacy of triple antibiotic paste, calcium hydroxide, and a proton pump inhibitor against resistant root canal pathogens. Eur J Dent. 2017;11:53–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yousefshahi H, Aminsobhani M, Shokri M, Shahbazi R. Anti-bacterial properties of calcium hydroxide in combination with silver, copper, zinc oxide or magnesium oxide. Eur J Transl Myol. 2018;28:7545.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014;98:1951–61.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Charannya S, Duraivel D, Padminee K, Poorni S, Nishanthine C, Srinivasan MR. Comparative evaluation of antimicrobial efficacy of silver nanoparticles and 2% chlorhexidine gluconate when used alone and in combination assessed using agar diffusion method: an in vitro study. Contemp Clin Dent. 2018;9(Suppl 2):S204–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ben-Knaz R, Pedahzur R, Avnir D. Bioactive doped metals: high synergism in the bactericidal activity of chlorhexidine@ silver towards wound pathogenic bacteria. RSC Adv. 2013;3:8009–15.

    Article  Google Scholar 

  42. Lu MM, Wang QJ, Chang ZM, et al. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. Int J Nanomedicine. 2017;12:3577–89.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guerreiro-Tanomaru JM, de Faria-Júnior NB, Duarte MA, Ordinola-Zapata R, Graeff MS, Tanomaru-Filho M. Comparative analysis of Enterococcus faecalis biofilm formation on different substrates. J Endod. 2013;39:346–50.

    Article  PubMed  Google Scholar 

  44. Du T, Shi Q, Shen Y, Cao Y, Ma J, Lu X, Xiong Z, Haapasalo M. Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J Endod. 2013;39:1438–43.

    Article  PubMed  Google Scholar 

  45. Deng DM, Buijs MJ, ten Cate JM. The effects of substratum on the pH response of Streptococcus mutans biofilms and on the susceptibility to 0.2% chlorhexidine. Eur J Oral Sci. 2004;112:42–7.

  46. Kishen A, Haapasalo M. Biofilm models and methods of biofilm assessment. Endod Top. 2010;22:58–78.

    Article  Google Scholar 

  47. George S, Kishen A. Augmenting the antibiofilm efficacy of advanced noninvasive light activated disinfection with emulsified oxidizer and oxygen carrier. J Endod. 2008;34:1119–23.

    Article  PubMed  Google Scholar 

  48. Kishen A, Shrestha A, Del Carpio-Perochena A. Validation of biofilm assays to assess antibiofilm efficacy in instrumented root canals after syringe irrigation and sonic agitation. J Endod. 2018;44:292–8.

    Article  PubMed  Google Scholar 

  49. Jenkinson HF. Adherence and accumulation of oral streptococci. Trends Microbiol. 1994;2:209–12.

    Article  PubMed  Google Scholar 

  50. Peters LB, Wesselink PR, Buijs JF, van Winkelhoff AJ. Viable bacteria in root dentinal tubules of teeth with apical periodontitis. J Endod. 2001;27:76–81.

    Article  PubMed  Google Scholar 

  51. Matsuo T, Shirakami T, Ozaki K, Nakanishi T, Yumoto H, Ebisu S. An immunohistological study of the localization of bacteria invading root pulpal walls of teeth with periapical lesions. J Endod. 2003;29:194–200.

    Article  PubMed  Google Scholar 

  52. Whitfield C, Keenleyside WJ. Regulation of expression of group IA capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. J Ind Microbiol. 1995;15:361–71.

    Article  PubMed  Google Scholar 

  53. Allaker RP. The use of nanoparticles to control oral biofilm formation. J Dent Res. 2010;89:1175–86.

    Article  PubMed  Google Scholar 

  54. Kreth J, Kim D, Nguyen M, Hsiao G, Mito R, Kang MK, Chugal N, Shi W. The antimicrobial effect of silver ion impregnation into endodontic sealer against Streptococcus mutans. Open Dent J. 2008;2:18–23.

    PubMed  PubMed Central  Google Scholar 

  55. Narayanan LL, Vaishnavi C. Endodontic microbiology. J Conserv Dent. 2010;13:233–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rôças IN, Siqueira JF Jr. Characterization of microbiota of root canal-treated teeth with posttreatment disease. J Clin Microbiol. 2012;50:1721–4.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Siqueira JF Jr, Rôças IN, Souto R, de Uzeda M, Colombo AP. Actinomyces species, streptococci, and Enterococcus faecalis in primary root canal infections. J Endod. 2002;28:168–72.

    Article  PubMed  Google Scholar 

  58. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine. 2010;6:103–9.

    Article  PubMed  Google Scholar 

  59. Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–74.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Siqueira JF Jr, Rôças IN. Exploiting molecular methods to explore endodontic infections: part 1–current molecular technologies for microbiological diagnosis. J Endod. 2005;31:411–23.

    Article  PubMed  Google Scholar 

  61. Tran KT, Torabinejad M, Shabahang S, Retamozo B, Aprecio RM, Chen JW. Comparison of efficacy of pulverization and sterile paper point techniques for sampling root canals. J Endod. 2013;39:1057–9.

    Article  PubMed  Google Scholar 

  62. Zapata RO, Bramante CM, de Moraes IG, Bernardineli N, Gasparoto TH, Graeff MS, Campanelli AP, Garcia RB. Confocal laser scanning microscopy is appropriate to detect viability of Enterococcus faecalis in infected dentin. J Endod. 2008;34:1198–201.

    Article  PubMed  Google Scholar 

  63. Shen Y, Stojicic S, Haapasalo M. Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J Endod. 2010;36:1820–3.

    Article  PubMed  Google Scholar 

  64. Netuschil L, Auschill TM, Sculean A, Arweiler NB. Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms—which stain is suitable? BMC Oral Health. 2014;14:2.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Inoue Y, Kanzaki Y. The mechanism of antibacterial activity of silver-loaded zeolite. J Inorg Biochem. 1997;67:377.

    Article  Google Scholar 

  66. Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018;13:65–71.

    Article  PubMed  Google Scholar 

  67. Tan P, Li Y, Liu XQ, Jiang Y, Sun LB. Core–shell AgCl@ SiO2 nanoparticles: Ag (I)-based antibacterial materials with enhanced stability. ACS Sustain Chem Eng. 2016;4:3268–75.

    Article  Google Scholar 

  68. Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Lett Appl Microbiol. 2012;54:383–91.

    Article  PubMed  Google Scholar 

  69. Hernández-Sierra JF, Ruiz F, Pena DC, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine. 2008;4:237–40.

    Article  PubMed  Google Scholar 

  70. Huang L, Dianging L, Yanjun L, Evans DG, Xue D. Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Sci Bull 2005;50: 514–9.

  71. Moazami F, Sahebi S, Ahzan S. Tooth discoloration induced by imidazolium based silver nanoparticles as an intracanal irrigant. J Dent (Shiraz). 2018;19:280–6.

    Google Scholar 

  72. Afkhami F, Elahy S, Mahmoudi-Nahavandi A. Spectrophotometric analysis of crown discoloration following the use of silver nanoparticles combined with calcium hydroxide as intracanal medicament. J Clin Exp Dent. 2017;9:e842–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by “Department of Scientific Research Projects, Süleyman Demirel University, Project Number: TDH-2018-6752”. The authors thank Professor Mustafa Nazıroğlu for his assistance with the CLSM and Associate Professor Özgür Koşkan for the assistance in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Üreyen Kaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conficts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tülü, G., Kaya, B.Ü., Çetin, E.S. et al. Antibacterial effect of silver nanoparticles mixed with calcium hydroxide or chlorhexidine on multispecies biofilms. Odontology 109, 802–811 (2021). https://doi.org/10.1007/s10266-021-00601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-021-00601-8

Keywords

Navigation