Skip to main content

Advertisement

Log in

Clinical factors affecting the translucency of monolithic Y-TZP ceramics

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The use of monolithic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics in aesthetically critical regions is questionable because of the insufficient translucency and opacity of the restorations. Intrinsic (manufacturing process) and extrinsic factors (laboratory procedures and clinical factors) can affect the translucency of monolithic zirconia. In this narrative review, the clinical factors (thickness, cementation type, colour of the monolithic zirconia, surface finishing methods and wear, dental background, cement colour, low temperature degradation) affecting the translucency of monolithic Y-TZP ceramics were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014;93:1235–42.

    PubMed  PubMed Central  Google Scholar 

  2. Ghodsi S, Jafarian Z. A review on translucent zirconia. Eur J Prosthodont Restor Dent. 2018;26:62–74.

    PubMed  Google Scholar 

  3. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater. 2014;30:e419–24.

    PubMed  Google Scholar 

  4. Griffin JD Jr. Tooth in a bag: same-day monolithic zirconia crown. Dent Today. 2013;32(124):126–31.

    Google Scholar 

  5. Sulaiman TA, Abdulmajeed AA, Donovan TE, Valittu PK, Närhi TO, Lassila LV. The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent Mater J. 2015;34:605–10.

    PubMed  Google Scholar 

  6. Sulaiman TA, Abdulmajeed AA, Shahramian K, Lassila L. Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia. J Prosthet Dent. 2017;118:216–20.

    PubMed  Google Scholar 

  7. Rinke S, Fischer C. Range of indications for translucent zirconia modifications: clinical and technical aspects. Quintessence Int. 2013;44:557–66.

    PubMed  Google Scholar 

  8. Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study. J Prosthet Dent. 2014;112:1141–50.

    PubMed  Google Scholar 

  9. Stawarcyzk B, Özcan M, Schmutz F, Trottmann A, Roos M, Hämmerle CH. Two-body wear of monolithic, veneered and glazed zirconia and their corresponding enamel antagonists. Acta Odontol Scand. 2013;71:102–12.

    Google Scholar 

  10. Harada K, Raigrodski AJ, Chung KH, Flinn BD, Dogan S, Mancl LA. A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. J Prosthet Dent. 2016;116:257–63.

    PubMed  Google Scholar 

  11. Tinschert J, Natt G, Hassenpflug S, Spiekermann H. Status of current CAD/CAM technology in dental medicine. Int J Comput Dent. 2004;7:25–45.

    PubMed  Google Scholar 

  12. Hmaidouch R, Müller WD, Lauer HC, Weigl P. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing. Int J Oral Sci. 2014;61:241–6.

    Google Scholar 

  13. O’Keefe KL, Pease PL, Herrin HK. Variables affecting the spectral transmittance of light through porcelain veneer samples. J Prosthet Dent. 1991;66:434–8.

    PubMed  Google Scholar 

  14. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Valittu PK, Närhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater. 2015;31:1180–7.

    PubMed  Google Scholar 

  15. Juntavee N, Attashu S. Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia. J Clin Exp Dent. 2018;10:e794–804.

    PubMed  PubMed Central  Google Scholar 

  16. Shahmiri R, Standard OC, Hart JN, Sorrell CC. Optical properties of zirconia ceramics for esthetic dental restorations: a systematic review. J Prosthet Dent. 2018;119:36–46.

    PubMed  Google Scholar 

  17. Alp G, Subaşı MG, Seghi RR, Johnston WM, Yilmaz B. Effect of shading technique and thickness on color stability and translucency of new generation translucent zirconia. J Dent. 2018;73:19–23.

    PubMed  Google Scholar 

  18. Ilie N, Stawarczyk B. Quantification of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions. J Prosthet Dent. 2015;113:114–21.

    PubMed  Google Scholar 

  19. Kim HK, Kim SH, Lee JB, Han JS, Yeo IS, Ha SR. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J Adv Prosthodont. 2016;8:37–42.

    PubMed  PubMed Central  Google Scholar 

  20. Subaşı MG, Alp G, Johnston WM, Yilmaz B. Effect of thickness on optical properties of monolithic CAD-CAM ceramics. J Dent. 2018;71:38–42.

    PubMed  Google Scholar 

  21. Wang F, Takahashi H, Iwasaki N. Translucency of dental ceramics with different thicknesses. J Prosthet Dent. 2013;110:14–20.

    PubMed  Google Scholar 

  22. Malkondu O, Tinastepe N, Kazazoglu E. Influence of type of cement on the color and translucency of monolithic zirconia. J Prosthet Dent. 2016;116:902–8.

    PubMed  Google Scholar 

  23. Kim HK, Kim SH. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent Mater. 2014;30:e229–37.

    PubMed  Google Scholar 

  24. Kurtulmus-Yilmaz S, Ulusoy M. Comparison of the translucency of shaded zirconia all-ceramic systems. J Adv Prosthodont. 2014;6:415–22.

    PubMed  PubMed Central  Google Scholar 

  25. Sen N, Sermet IB, Cinar S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J Prosthet Dent. 2018;119:308.

    PubMed  Google Scholar 

  26. Shah K, Holloway JA, Denry IL. Effect of coloring with various metal oxides on the microstructure, color, and flexural strength of 3Y-TZP. J Biomed Mater Res B Appl Biomater. 2008;87:329–37.

    PubMed  Google Scholar 

  27. Subaşı MG, Alp G, Johnston WM, Yilmaz B. Effects of fabrication and shading technique on the color and translucency of new-generation translucent zirconia after coffee thermocycling. J Prosthet Dent. 2018;120:603–8.

    PubMed  Google Scholar 

  28. Ueda K, Güth JF, Erdelt K, Stimmelmayr M, Kappert H, Beuer F. Light transmittance by a multi-coloured zirconia material. Dent Mater J. 2015;34:310–4.

    PubMed  Google Scholar 

  29. Akar GC, Pekkan G, Cal E, Eskitaşçıoğlu G, Özcan M. Effects of surface-finishing protocols on the roughness, color change, and translucency of different ceramic systems. J Prosthet Dent. 2014;112:314–21.

    PubMed  Google Scholar 

  30. Kim HK, Kim SH, Lee JB, Ha SR. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J Prosthet Dent. 2016;115:773–9.

    PubMed  Google Scholar 

  31. Capa N, Celebi C, Casur A, Tuncel I, Usumez A. The translucency effect of different colored resin cements used with zirconia core and titanium abutments. Niger J Clin Pract. 2017;20:1517–21.

    PubMed  Google Scholar 

  32. Carames J, Tovar Suinaga L, Yu YC, Pérez A, Kang M. Clinical advantages and limitations of monolithic zirconia restorations full arch implant supported reconstruction: case series. Int J Dent. 2015;2015:392496.

    PubMed  PubMed Central  Google Scholar 

  33. Dede DÖ, Armağanci A, Ceylan G, Celik E, Cankaya S, Yilmaz B. Influence of implant abutment material on the color of different ceramic crown systems. J Prosthet Dent. 2016;116:764–9.

    PubMed  Google Scholar 

  34. Rosentritt M, Rembs A, Behr M, Hahnel S, Preis V. In vitro performance of implant-supported monolithic zirconia crowns: Influence of patient-specific tooth-coloured abutments with titanium adhesive bases. J Dent. 2015;43:839–45.

    PubMed  Google Scholar 

  35. Chang J, Da Silva JD, Sakai M, Kristiansen J, Ishikawa-Nagai S. The optical effect of composite luting cement on all ceramic crowns. J Dent. 2009;37:937–43.

    PubMed  Google Scholar 

  36. Tabatabaian F, Shabani S, Namdari M, Sadeghpour K. Masking ability of a zirconia ceramic on composite resin substrate shades. Dent Res J (Isfahan). 2017;14:389–94.

    Google Scholar 

  37. Tabatabaian F, Taghizade F, Namdari M. Effect of coping thickness and background type on the masking ability of a zirconia ceramic. J Prosthet Dent. 2018;119:159–65.

    PubMed  Google Scholar 

  38. Tabatabaian F. Color aspect of monolithic zirconia restorations: a review of the literature. J Prosthodont. 2019;28:276–87.

    PubMed  Google Scholar 

  39. Tabatabaian F, Dalirani S, Namdari M. Effect of thickness of zirconia ceramic on its masking ability: an in vitro study. J Prosthodont. 2017. https://doi.org/10.1111/jopr.12625.

    Article  PubMed  Google Scholar 

  40. Tabatabaian F, Motamedi E, Sahabi M, Torabzadeh H, Namdari M. Effect of thickness of monolithic zirconia ceramic on final color. J Prosthet Dent. 2018;120:257–62.

    PubMed  Google Scholar 

  41. Alghazzawi TF. The effect of extended aging on the optical properties of different zirconia materials. J Prosthodont Res. 2017;61:305–14.

    PubMed  Google Scholar 

  42. Camposilvan E, Leone R, Gremillard L, Sorrentino R, Zarone F, Ferrari M, Chevalier J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater. 2018;34:879–90.

    PubMed  Google Scholar 

  43. Fathy SM, El-Fallal AA, El-Negoly SA, El Bedawy AB. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater Odontol Scand. 2015;1:86–92.

    PubMed  PubMed Central  Google Scholar 

  44. Kim HK, Kim SH. Effect of hydrothermal aging on the optical properties of precolored dental monolithic zirconia ceramics. J Prosthet Dent. 2019;121:676–82.

    PubMed  Google Scholar 

  45. Putra A, Chung KH, Flinn BD, Kuykendall T, Zheng C, Harada K, Raigrodski AJ. Effect of hydrothermal treatment on light transmission of translucent zirconias. J Prosthet Dent. 2017;118:422–9.

    PubMed  Google Scholar 

  46. Walczak K, Meißner H, Range U, Sakkas A, Boening K, Wieckiewicz M, Konstantinidis I. Translucency of zirconia ceramics before and after artificial aging. J Prosthodont. 2019;28:e319–24.

    PubMed  Google Scholar 

  47. Ilie N, Stawarczyk B. Quantification of the amount of light passing through zirconia: the effect of material shade, thickness, and curing conditions. J Dent. 2014;42:684–90.

    PubMed  Google Scholar 

  48. Erdelt K, Pinheiro Dias Engler ML, Beuer F, Güth JF, Liebermann A, Schweiger J. Computable translucency as a function of thickness in a multi-layered zirconia. J Prosthet Dent. 2019;121:683–9.

    PubMed  Google Scholar 

  49. Weigl P, Sander A, Wu Y, Felber R, Lauer HC, Rosentritt M. In-vitro performance and fracture strength of thin monolithic zirconia crowns. J Adv Prosthodont. 2018;10:79–84.

    PubMed  PubMed Central  Google Scholar 

  50. Gu XH, Kern M. Marginal discrepancies and leakage of all-ceramic crowns: influence of luting agents and aging conditions. Int J Prosthodont. 2003;16:109–16.

    PubMed  Google Scholar 

  51. Aboushelib MN, Dozic A, Liem JK. Influence of framework color and layering technique on the final color of zirconia veneered restorations. Quintessence Int. 2010;41:e84–9.

    PubMed  Google Scholar 

  52. Nam JY, Park MG. Effects of aqueous and acid-based coloring liquids on the hardness of zirconia restorations. J Prosthet Dent. 2017;117:662–8.

    PubMed  Google Scholar 

  53. Orhun E. The effect of coloring liquid dipping time on the fracture load and color of zirconia ceramics. J Adv Prosthodont. 2017;9:67–73.

    PubMed  PubMed Central  Google Scholar 

  54. Askari E, Flores P, Silva F. A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics. J Mech Behav Biomed Mater. 2018;77:461–9.

    PubMed  Google Scholar 

  55. Silva LHD, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: a review of new materials and processing methods. Braz Oral Res. 2017;31:e58.

    PubMed  Google Scholar 

  56. Spyropoulou PE, Giroux EC, Razzoog ME, Duff RE. Translucency of shaded zirconia core material. J Prosthet Dent. 2011;105:304–7.

    PubMed  Google Scholar 

  57. Janyavula S, Lawson N, Cakir D, Beck P, Ramp LC, Burgess JO. The wear of polished and glazed zirconia against enamel. J Prosthet Dent. 2013;109:22–9.

    PubMed  Google Scholar 

  58. Kontos L, Schille C, Schweizer E, Geis-Gerstorfer J. Influence of surface treatment on the wear of solid zirconia. Acta Odontol Scand. 2013;71:482–7.

    PubMed  Google Scholar 

  59. Passos SP, Torrealba Y, Major P, Linke B, Flores-Mir C, Nychka JA. In vitro wear behavior of zirconia opposing enamel: a systematic review. J Prosthodont. 2014;23:593–601.

    PubMed  Google Scholar 

  60. Rupawala A, Musani SI, Madanshetty P, Dugal R, Shah UD, Sheth EJ. A study on the wear of enamel caused by monolithic zirconia and the subsequent phase transformation compared to two other ceramic systems. J Indian Prosthodont Soc. 2017;17:8–14.

    PubMed  PubMed Central  Google Scholar 

  61. Zurek AD, Alfaro MF, Wee AG, Yuan JC, Barao VA, Mathew MT, Sukotjo C. Wear characteristics and volume loss of CAD/CAM ceramic materials. J Prosthodont. 2019;28:e510–8.

    PubMed  Google Scholar 

  62. Mohammadi-Bassir M, Babasafari M, Rezvani MB, Jamshidian M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. J Prosthet Dent. 2017;118:658–65.

    PubMed  Google Scholar 

  63. Ozer F, Naden A, Turp V, Mante F, Sen D, Blatz MB. Effect of thickness and surface modifications on flexural strength of monolithic zirconia. J Prosthet Dent. 2018;119:987–93.

    PubMed  Google Scholar 

  64. Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials. 2006;27:2186–92.

    PubMed  Google Scholar 

  65. Denry IL, Peacock JJ, Holloway JA. Effect of heat treatment after accelerated aging on phase transformation in 3Y-TZP. J Biomed Mater Res B Appl Biomater. 2010;93:236–43.

    PubMed  Google Scholar 

  66. Pop-Ciutrila IS, Ghinea R, Colosi HA, Dudea D. Dentin translucency and color evaluation in human incisors, canines, and molars. J Prosthet Dent. 2016;115:475–81.

    PubMed  Google Scholar 

  67. Church TD, Jessup JP, Guillory VL, Vandewalle KS. Translucency and strength of high-translucency monolithic zirconium oxide materials. Gen Dent. 2017;65:48–52.

    PubMed  Google Scholar 

  68. Jirajariyavej B, Wanapirom P, Anunmana C. Influence of implant abutment material and ceramic thickness on optical properties. J Prosthet Dent. 2018;119:819–25.

    PubMed  Google Scholar 

  69. Alqahtani MQ, Aljurais RM, Alshaafi MM. The effects of different shades of resin luting cement on the color of ceramic veneers. Dent Mater J. 2012;31:354–61.

    PubMed  Google Scholar 

  70. Calgaro PA, Furuse AY, Correr GM, Ornaghi BP, Gonzaga CC. Post-cementation colorimetric evaluation of the interaction between the thickness of ceramic veneers and the shade of resin cement. Am J Dent. 2014;27:191–4.

    PubMed  Google Scholar 

  71. Jankar AS, Kale Y, Pustake S, Bijjaragi S, Pustake B. Spectrophotometric study of the effect of luting agents on the resultant shade of ceramic veneers: an invitro study. J Clin Diagn Res. 2015;9:ZC56–60.

    PubMed  PubMed Central  Google Scholar 

  72. Dede DÖ, Armaganci A, Ceylan G, Cankaya S, Celik E. Influence of abutment material and luting cements color on the final color of all ceramics. Acta Odontol Scand. 2013;71:1570–8.

    PubMed  Google Scholar 

  73. Lughi V, Sergo V. Low temperature degradation-aging-of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater. 2010;26:807–20.

    PubMed  Google Scholar 

  74. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater. 2008;24:289–98.

    PubMed  Google Scholar 

  75. Nakamura K, Harada A, Kanno T, Inagaki R, Niwano Y, Milleding P, Örtengren U. The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. J Mech Behav Biomed Mater. 2015;47:49–56.

    PubMed  Google Scholar 

  76. Balzaretti NM, da Jornada JA. Pressure dependence of the refractive index of monoclinic and yttria-stabilized cubic zirconia. Phys Rev B: Condens Matter. 1995;52:9266–9.

    Google Scholar 

  77. French RH, Glass SJ, Ohuchi FS, Xu Y, Ching WY. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B Condens Matter. 1994;49:5133–42.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gürel Pekkan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekkan, G., Özcan, M. & Subaşı, M.G. Clinical factors affecting the translucency of monolithic Y-TZP ceramics. Odontology 108, 526–531 (2020). https://doi.org/10.1007/s10266-019-00446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-019-00446-2

Keywords

Navigation