Skip to main content

Advertisement

Log in

Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

To determine the adverse effects against human dental pulp tissue, the sensitivity of human dental pulp cells (D824 cells) to 18 chemical agents used for endodontic treatments in dentistry was examined. The cytotoxicity, as determined by a decrease in colony-forming ability of cells treated with the chemical agents, increased as the concentration increased. As a quantitative measure of the cytotoxic effect, LC50, the concentration which induces a 50% lethality, was extrapolated from the concentration–response curves. The rank of the chemical agents according to their cytotoxic effect (LC50) was sodium arsenite > formaldehyde > hydrogen peroxide > zinc oxide > thymol ≈ iodoform ≈ eugenol > guaiacol > ethylenediaminetetraacetic acid ≈ iodine > procaine > lidocaine ≈ chloramphenicol ≈ m-cresol > calcium hydroxide ≈ sodium hypochlorite ≈ phenol ≈ p-phenolsulfonic acid. To compare the cytotoxicity and the levels of apoptosis and mRNA expression of five genes related to the function of dental pulp tissue, D824 cells treated with the LC50 concentrations of chemical agents were assayed by the TUNEL method and quantitative reverse transcription polymerase chain reaction analysis, respectively. The inducibility of apoptotic cells and the level of mRNA expression of the genes varied with the chemical agents, indicating that both effects occurred independent of the rank of cytotoxic effect of the chemical agents. The results not only provide information concerning cytotoxicity of various chemical agents to human dental pulp cells, but also show an insight into the diversity of the pharmacodynamic action of the chemical agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bartelstone HJ. Radioiodine penetration through intact enamel with uptake by bloodstream and thyroid gland. J Dent Res. 1951;30:728–33.

    Article  PubMed  Google Scholar 

  2. Myers DR, Shoaf HK, Dirksen TR, Pashley DH, Whitford GM, Reynolds KE. Distribution of 14C-formaldehyde after pulpotomy with formocresol. J Am Dent Assoc. 1978;96:805–13.

    PubMed  Google Scholar 

  3. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97:13625–30.

    Article  PubMed  Google Scholar 

  4. Seo BM, Miura M, Gronthos S, Sartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    Article  PubMed  Google Scholar 

  5. Tsutsui TW, Inaba T, Fisher LW, Robey PG, Tsutsui T. In vitro chromosome aberration tests using human dental pulp cells to detect the carcinogenic potential of chemical agents. Odontology. 2006;94:44–50.

    Article  PubMed  Google Scholar 

  6. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–5.

    Article  PubMed  Google Scholar 

  7. Tompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–62.

    Article  Google Scholar 

  8. Tsutsui T, Hayashi N, Maizumi H, Huff J, Barrett JC. Benzene-, catechol-, hydroquinone- and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells. Mutat Res. 1997;373:113–23.

    Article  PubMed  Google Scholar 

  9. Hamaguchi F, Tsutsui T. Assessment of genotoxicity of dental antiseptics: Ability of phenol, guaiacol, p-phenolsulfonic acid, sodium hypochlorite, p-chlorophenol, m-cresol or formaldehyde to induce unscheduled DNA synthesis in cultured Syrian hamster embryo cells. Jpn J Pharmacol. 2000;83:273–6.

    Article  PubMed  Google Scholar 

  10. Takahashi M, Barrett JC, Tsutsui T. Transformation by inorganic arsenic compounds of normal Syrian hamster embryo cells into neoplastic state in which they become anchorage-independent and cause tumors in newborn hamsters. Int J Cancer. 2002;99:629–34.

    Article  PubMed  Google Scholar 

  11. Yamaguchi F, Tsutsui T. Cell-transforming activity of fourteen chemical agents used in dental practice in Syrian hamster embryo cells. J. Pharmacol Sci. 2003;93:497–500.

    Article  PubMed  Google Scholar 

  12. Hikiba H, Watanabe E, Barrett JC, Tsutsui T. Ability of fourteen chemical agents used in dental practice to induce chromosome aberrations in Syrian hamster embryo cells. J Pharmacol Sci. 2005;97:146–52.

    Article  PubMed  Google Scholar 

  13. Miyachi T, Tsutsui T. Ability of 13 chemical agents used in dental practice to induce sister-chromatid exchanges in Syrian hamster embryo cells. Odontology. 2005;93:24–9.

    Article  PubMed  Google Scholar 

  14. Hagiwara M, Watanabe E, Barrett JC, Tsutsui T. Assessment of genotoxicity of 14 chemical agents used in dental practice: ability to induce chromosome aberrations in Syrian hamster embryo cells. Mutat Res. 2006;603:111–20.

    Article  PubMed  Google Scholar 

  15. Nishimura H, Higo Y, Ohno M, Tsutsui TW, Tsutsui T. Ability of root canal antiseptics used in dental practice to induce chromosome aberrations in human dental pulp cells. Mutat Res. 2008;649:45–53.

    Article  PubMed  Google Scholar 

  16. Someya H, Higo Y, Ohno M, Tsutsui TW, Tsutsui T. Clastogenic activity of seven endodontic medications used in dental practice in human dental pulp cells. Mutat Res. 2008;650:39–47.

    Article  PubMed  Google Scholar 

  17. Beertsen W, VandenBos T, Everts V. Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res. 1999;78:1221–9.

    Article  PubMed  Google Scholar 

  18. Goldberg M, Six N, Decup F, Lasfargues J-J, Salih E, Tompkins K, Veis A. Bioactive molecules and the future of pulp therapy. Am J Dent. 2003;16:66–76.

    PubMed  Google Scholar 

  19. Hietala E-L, Larmas M, Salo T. Localization of estrogen-receptor-related antigen in human odontoblasts. J Dent Res. 1998;77:1384–7.

    Article  PubMed  Google Scholar 

  20. Dale JB, Sarich SL, Brets TM, Hatton JF, Zachow RJ. Hormonal regulation of androgen receptor messenger ribonucleic acid expression in human tooth pulp. J Dent Res. 2002;81:360–5.

    Article  PubMed  Google Scholar 

  21. Jukić S, Prpić-Mehičić G, Talan-Hranilovć J, Miletić I, Šegović S, Anić I. Estrogen receptors in human pulp tissue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95:340–4.

    Article  PubMed  Google Scholar 

  22. Riggs BL, Khosla S, Melton LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23:279–302.

    Article  PubMed  Google Scholar 

  23. Hietala E-L, Larmas M. The effect of ovariectomy on dentin formation and caries in adult rats. Acta Odontol Scan. 1992;50:337–43.

    Article  Google Scholar 

  24. Molsted K, Kjaer I, Giwercman A, Vesterhauge S, Skakkebaek NE. Craniofacial morphology in patients with Kallmann’s syndrome with and without cleft lip and palate. Cleft Palate Craniofac J. 1997;34:417–24.

    Article  PubMed  Google Scholar 

  25. Renton T, Yiangou Y, Baecker PA, Ford AP, Anand P. Capsaicin receptor VR1 and ATP purinoceptor P2X3 in painful and nonpainful human tooth pulp. J Orofac Pain. 2003;17:245–50.

    PubMed  Google Scholar 

  26. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  PubMed  Google Scholar 

  27. Chaudhary P, Martenson ME, Baumann TK. Vanilloid receptor expression and capsaicin excitation of rat dental primary afferent neurons. J Dent Res. 2001;80:1518–23.

    Article  PubMed  Google Scholar 

  28. Galloway SM, Aardema MJ, Ishidate M Jr, Ivett JL, Kirkland DJ, Morita T, Mosesso P, Sofuni T. Report from working group on in vitro tests for chromosome aberrations. Mutat Res. 1994;312:241–61.

    Article  PubMed  Google Scholar 

  29. Maizumi N, Tamura Y, Kanai H, Tsutsui T. Quantitative comparison of the cytocidal effect of seven macrolide antibiotics on human periodontal ligament fibroblasts. J Periodont Res. 2002;37:250–4.

    Article  PubMed  Google Scholar 

  30. Hirose Y, Tsutsui TW, Ohno M, Barrett JC, Tsutsui T. Effects of a catechol-O-methyltransferase inhibitor on catechol estrogen-induced cellular transformation, chromosome aberrations and apoptosis in Syrian hamster embryo cells. Int J Cancer. 2007;120:1627–33.

    Article  PubMed  Google Scholar 

  31. Tsutsui T, Suzuki N, Maizumi H, Barrett JC. Comparison of human versus Syrian hamster cells in culture for induction of mitotic inhibition, binucleation and multinucleation, following treatment with four aneuploidogens. Toxicol In Vitro. 1990;4:75–84.

    Article  PubMed  Google Scholar 

  32. Kato T, Shirayama K, Tsutsui TW, Tsutsui T. Induction of mRNA expression of osteogenesis-related genes by guaiacol in human dental pulp cells. Odontology. 2010;98:165–9.

    Article  PubMed  Google Scholar 

  33. Al-Awadhi S, Spears R, Gutmann JL, Opperman LA. Cultured primary osteoblast viability and apoptosis in the presence of root canal sealers. J Endod. 2004;30:527–33.

    Article  PubMed  Google Scholar 

  34. Kitamura C, Ogawa Y, Morotomi T, Terashita M. Differential induction of apoptosis by capping agents during pulp wound healing. J Endod. 2002;29:41–3.

    Article  Google Scholar 

  35. Suzuki H, Seto K, Mori M, Suzuki M, Miura S, Ishii H. Monochloramine induced DNA fragmentation in gastric cell line MKN45. Am J Physiol. 1998;275:G712–6.

    PubMed  Google Scholar 

  36. Bashir S, Sharma Y, Irshad M, Nag TC, Tiwari M, Kabra M, Dogra TD. Arsenic induced apoptosis in rat liver following repeated 60 days exposure. Toxicology. 2006;217:63–70.

    Article  PubMed  Google Scholar 

  37. Zararsiz I, Kus I, Ogeturk M, Akpolat N, Kose E, Meydan S, Sarsilmaz M. Melatonin prevents formaldehyde-induced neurotoxicity in prefrontal cortex of rats: an immunohistochemical and biochemical study. Cell Biochem Funct. 2007;25:413–8.

    Article  PubMed  Google Scholar 

  38. Lee SH, Heo JS, Lee MY, Han HJ. Effect of dihydrotestosterone on hydrogen peroxide-induced apoptosis of mouse embryonic stem cells. J Cell Physiol. 2008;216:269–75.

    Article  PubMed  Google Scholar 

  39. Yoo C-B, Han K-T, Cho K-S, Ha J, Park H-J, Nam J-H, Kil UH, Lee KT. Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL- 60 human promyelocytic leukemia cells. Cancer Lett. 2005;225:41–52.

    Article  PubMed  Google Scholar 

  40. Xu J, Liu X, Yang X, Li X. Study on the effect of iodine excess on cell apoptosis in rat thyroid cells (FRTL). Wei Sheng Yan Jiu. 2007;36:443–5.

    PubMed  Google Scholar 

  41. Werdehausen R, Braun S, Essmann F, Schulze-Osthoff K, Walczak H, Lipfert P, Stevens MF. Lidocaine induces apoptosis via the mitochondrial pathway independently of death receptor signaling. Anesthesiology. 2007;107:136–43.

    Article  PubMed  Google Scholar 

  42. Popadic S, Popadic D, Ramic Z, Stojkovic MM, Trajkovic V, Milinkovic M, Medenica L. Chloramphenicol induces in vitro growth arrest and apoptosis of human keratinocytes. Cell Biol Toxicol. 2006;22:371–9.

    Article  PubMed  Google Scholar 

  43. Stanley HR, Clark AE, Pameijer CH, Louw NP, et al. Pulp capping with a modified bioglass formula (#A68-modified). Am J Dent. 2001;14:227–32.

    PubMed  Google Scholar 

  44. Lei J, Da-Peng C, Lu-Ping Q, Ting H, Qiao-Yan Z, Zheng Z, Fei Y. Antiosteoporotic activity of phenolic compounds from Curculigo orchioides. Phytomedicine. 2009;16:874–81.

    Article  Google Scholar 

  45. Moriguchi N, Hinoi E, Takarada T, Matsushima N, Uno K, Yoneda Y. Oral administration of phenolic antidiarrheic ingredients prevents ovariectomy-induced bone loss. Biochem Pharmacol. 2007;73:385–93.

    Article  PubMed  Google Scholar 

  46. Puel C, Mardon J, Agalias A, Davicco M-J, Lebecque P, Mazur A, Horcajada M-N, Skaltsounis A-L, Coxan V. Major phenolic compounds in olive oil modulate bone loss in an ovariectomy/inflammation experimental model. J Agric Food Chem. 2008;56:9417–22.

    Article  PubMed  Google Scholar 

  47. Pienta RJ, Poiley JA, Lebherz WBIII. Morphological transformation of early passage golden Syrian hamster embryo cells derived from cryopreserved primary cultures as a reliable in vitro bioassay for identifying diverse carcinogens. Int J Cancer. 1977;19:642–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeki Tsutsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, M., Tsutsui, T.W., Kobayashi, T. et al. Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry. Odontology 101, 43–51 (2013). https://doi.org/10.1007/s10266-011-0047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-011-0047-9

Keywords

Navigation