Skip to main content
Log in

Circumnutation and distribution of phytohormones in Vigna angularis epicotyls

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Circumnutation is a plant growth movement in which the tips of axial organs draw a circular orbit. Although it has been studied since the nineteenth century, its mechanism and significance are still unclear. Greened adzuki bean (Vigna angularis) epicotyls exhibited a clockwise circumnutation in the top view with a constant period of 60 min under continuous white light. The bending zone of circumnutation on the epicotyls was always located in the region 1–3 cm below the tip, and its basal end was almost identical to the apical end of the region where the epicotyl had completely elongated. Therefore, epidermal cells that construct the bending zone are constantly turning over with their elongation growth. Since exogenously applied auxin transport inhibitors and indole-3-acetic acid (IAA) impaired circumnutation without any effect on the elongation rate of epicotyls, we attempted to identify the distribution pattern of endogenous auxin. Taking advantage of its large size, we separated the bending zone of epicotyls into two halves along the longitudinal axis, either convex/concave pairs in the plane of curvature of circumnutation or pre-convex/pre-concave pairs perpendicular to the plane. By liquid chromatography–mass spectrometry, we found, for the first time, that IAA and gibberellin A1 were asymmetrically distributed in the pre-convex part in the region 1–2 cm below the tip. This region of epicotyl sections exhibited the highest responsiveness to exogenously applied hormones, and the latent period between the hormone application and the detection of a significant enhancement in elongation was 15 min. Our results suggest that circumnutation in adzuki bean epicotyls with a 60 min period is maintained by differential growth in the bending zone, which reflects the hormonal status 15 min before and which is shifting sequentially in a circumferential direction. Cortical microtubules do not seem to be involved in this regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Badescu GO, Napier RM (2006) Receptors for auxin: will it all end in TIRs? Trends Plant Sci 11:217–223

    Article  CAS  PubMed  Google Scholar 

  • Badot P-M, Melin D, Garrec J-P (1990) Circumnutation in Phaseolus vulgaris. II. Potassium content in the free moving part of the shoot. Plant Physiol Biochem 28:123–130

    CAS  Google Scholar 

  • Barkley GM, Evans ML (1970) Timing of the auxin response in etiolated pea stem sections. Plant Physiol 45:143–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskin TI (2007) Ultradian growth oscillations in organs: physiological signal or noise? In: Mancuso S, Shabala S (eds) Rhythms in plants: phenomenology, mechanisms and adaptative significance. Springer, Berlin, pp 63–76

    Chapter  Google Scholar 

  • Britz SJ, Galston AW (1982a) Physiology of movements in stems of seedling Pisum sativum L. cv. Alaska. I. Experimental separation of nutation from gravitropism. Plant Physiol 70:264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britz SJ, Galston AW (1982b) Physiology of movements in stems of seedling Pisum sativum L. cv. Alaska. II. The role of the apical hook and of auxin in nutation. Plant Physiol 70:1401–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AH (1993) Circumnutations: from Darwin to space flights. Plant Physiol 101:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AH, Chapman DK (1984) Circumnutation observed without a significant gravitational force in spaceflight. Science 225:230–232

    Article  CAS  PubMed  Google Scholar 

  • Caré AF, Nefed’ev L, Bonnet B, Millet B, Badot P-M (1998) Cell elongation and revolving movement in Phaseolus vulgaris L. twining shoots. Plant Cell Physiol 39:914–912

    Article  Google Scholar 

  • Chapman DK, Brown AH (1979) Residual nutational activity of the sunflower hypocotyl in simulated weightlessness. Plant Cell Physiol 20:473–478

    Article  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  CAS  PubMed  Google Scholar 

  • Comparot S, Morillon R, Badot P-M (2000) Water permeability and revolving movement in Phaseolus vulgaris L. twining shoots. Plant Cell Physiol 41:114–118

    Article  CAS  PubMed  Google Scholar 

  • Darwin C, Darwin F (1880) The power of movements in plants. John Murray, London

    Book  Google Scholar 

  • Ding Z, Galván-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452

    Article  CAS  PubMed  Google Scholar 

  • Evans ML (1974) Rapid responses to plant hormones. Annu Rev Plant Physiol 25:195–223

    Article  CAS  Google Scholar 

  • Fischer K, Schopfer P (1997) Interaction of auxin, light, and mechanical stress in orienting microtubules in relation to tropic curvature in the epidermis of maize coleoptiles. Protoplasma 196:108–116

    Article  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:425–430

    Article  CAS  PubMed  Google Scholar 

  • Haga K, Iino M (2006) Asymmetric distribution of auxin correlated with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls. J Exp Bot 57:837–847

    Article  CAS  PubMed  Google Scholar 

  • Haga K, Takano M, Neumann R, Iino M (2005) The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17:103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  CAS  PubMed  Google Scholar 

  • Hatakeda Y, Kamada Y, Goto N, Fukaki H, Tasaka M, Suge H, Takahashi H (2003) Gravitropic response plays an important role in the nutational movements of the shoots of Pharbitis nil and Arabidopsis thaliana. Physiol Plant 118:464–473

    Article  CAS  Google Scholar 

  • Iino M (1991) Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant Cell Environ 14:279–286

    Article  Google Scholar 

  • Israelsson D, Johnsson A (1967) A theory for circumnutations in Helianthus annuus. Physiol Plant 20:957–976

    Article  Google Scholar 

  • Kim HJ, Kobayashi A, Fujii N, Miyazawa Y, Takahashi H (2016) Gravitropic response and circumnutation in pea (Pisum sativum) seedling roots. Physiol Plant 157:108–118

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa D, Hatakeda Y, Kamada M, Fujii N, Miyazawa Y, Hoshino A, Iida S, Fukaki H, Terao-Morita M, Tasaka M, Suge H, Takahashi H (2005) Shoot circumnutation and winding movements require gravisensing cells. Proc Natl Acad Sci USA 102:18742–18747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosuge K, Iida S, Katou K, Mimura T (2013) Circumnutation on the water surface: female flowers of Vallisneria. Sci Rep 3:1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409

    Article  CAS  PubMed  Google Scholar 

  • Landrein B, Hamant O (2013) How mechanical stress controls microtubules behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J 75:324–338

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1991) An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. Plant Cell 3:1167–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR (2014) Phototropism: growing towards an understanding of plant movement. Plant Cell 26:38–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • Lloyd C (2011) Dynamic microtubules and the texture of plant cell walls. Int Rev. Cell Mol Biol 287:287–329

    Article  CAS  PubMed  Google Scholar 

  • Mayumi K, Shibaoka H (1996) The cyclic reorientation of cortical microtubules on walls with a crossed polylamellate structure: effects of plant hormones and an inhibitor of protein kinases on the progression of the cycle. Protoplasma 195:112–122

    Article  CAS  Google Scholar 

  • Michniewicz M, Brewer PB, Friml J (2007) Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book 5:e0108

    PubMed  PubMed Central  Google Scholar 

  • Millet B, Melin D, Bonnet B, Ibrahim CA, Mercier J (1984) Rhythmic circumnutation movement of the shoots in Phaseolus vulgaris L. Chronobiol Int 1:11–19

    Article  CAS  PubMed  Google Scholar 

  • Millet B, Melin D, Badot P-M (1988) Circumnutation in Phaseolus vulgaris. I. Growth, osmotic potential and cell ultrastructure in the free-moving part of the shoot. Physiol Plant 72:133–138

    Article  Google Scholar 

  • Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720

    Article  CAS  PubMed  Google Scholar 

  • Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128:935–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niinuma K, Someya N, Kimura M, Yamaguchi I, Hamamoto H (2005) Circadian rhythm of circumnutation in inflorescence stems of Arabidopsis. Plant Cell Physiol 46:1423–1427

    Article  CAS  PubMed  Google Scholar 

  • O’neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker KE, Briggs WR (1990) Transport of indole-3-acetic acid during gravitropism in intact maize coleoptiles. Plant Physiol 94:1763–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J (2011) Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67:817–826

    Article  PubMed  Google Scholar 

  • Ross JJ, O’neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21:547–552

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama M, Shibaoka H (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea. Protoplasma 157:165–171

    Article  CAS  Google Scholar 

  • Sakiyama-Sogo M, Shibaoka H (1993) Gibberellin A3 and abscisic acid cause the reorientation of cortical microtubules in epicotyl cells of the decapitated dwarf pea. Plant Cell Physiol 34:431–437

    CAS  Google Scholar 

  • Schuster J, Engelmann W (1997) Circumnutation of Arabidopsis thaliana seedlings. Biol Rhythm Res 28:422–440

    Article  Google Scholar 

  • Shibaoka H (1972) Gibberellin–olchicine interaction in elongation of azuki bean epicotyl sections. Plant Cell Physiol 13:461–469

    CAS  Google Scholar 

  • Shibaoka H (1994) Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45:527–544

    Article  CAS  Google Scholar 

  • Smyth DR (2016) Helical growth in plant organs: mechanisms and significance. Development 143:3272–3282

    Article  CAS  PubMed  Google Scholar 

  • Someya N, Niinuma K, Kimura M, Yamaguchi I, Hamamoto H (2006) Circumnutation of Arabidopsis thaliana inflorescence stems. Biol Plant 50:287–290

    Article  Google Scholar 

  • Stolarz M (2009) Circumnutation as a visible plant action and reaction. Plant Signal Behav 4:380–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Hayashi K, Kinoshita T (2012) Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159:632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takesue K, Shibaoka H (1998) The cyclic reorientation of cortical microtubules in epidermal cells of azuki bean epicotyls: the role of actin filaments in the progression of the cycle. Planta 205:539–546

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara K, Sawada H, Kohno Y, Matsuura T, Izumi MC, Terao T, Ioki M, Tamaoki M (2015) Ozone-induced rice grain yield loss is triggered via a change in panicle morphology that is controlled by ABERRANT PANICLE ORGANIZATION 1 gene. PLoS One 10:e0123308

    Article  PubMed  PubMed Central  Google Scholar 

  • Velasquez SM, Balbez E, Kleine-Vehn J, Estevez JM (2016) Auxin and cellular elongation. Plant Physiol 170:1206–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York

    Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara T, Iino M (2005) Circumnutation of rice coleoptiles: its occurrence, regulation by phytochrome, and relationship with gravitropism. Plant Cell Environ 28:134–146

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grant-in-Aid for Scientific Research No. 26440143 from the Japan Society for the Promotion of Science, and by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) as part of Joint Research Program implemented at the Institute of Plant Science and Resources, Okayama University in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyuki Iida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 1668 KB)

Supplementary material 2 (PDF 14160 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iida, M., Takano, T., Matsuura, T. et al. Circumnutation and distribution of phytohormones in Vigna angularis epicotyls. J Plant Res 131, 165–178 (2018). https://doi.org/10.1007/s10265-017-0972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-017-0972-y

Keywords

Navigation