Skip to main content
Log in

Functional characterization of blue-light-induced responses and PHOTOTROPIN 1 gene in Welwitschia mirabilis

  • JPR Symposium
  • The Cutting Edge of Photoresponse Mechanisms: Photoreceptor and Signaling Mechanism
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The blue light (BL) receptor phototropin (phot) is specifically found in green plants; it regulates various BL-induced responses such as phototropism, chloroplast movement, stomatal opening, and leaf flattening. In Arabidopsis thaliana, two phototropins—phot1 and phot2—respond to blue light in overlapping but distinct ways. These BL-receptor-mediated responses enhance the photosynthetic activity of plants under weak light and minimize photodamage under strong light conditions. Welwitschia mirabilis Hook.f. found in the Namib Desert, and it has adapted to severe environmental stresses such as limiting water and strong sunlight. Although the plant has physiologically and ecologically unique features, it is unknown whether phototropin is functional in this plant. In this study, we assessed the functioning of phot-mediated BL responses in W. mirabilis. BL-dependent phototropism and stomatal opening was observed but light-dependent chloroplast movement was not detected. We performed a functional analysis of the PHOT1 gene of W. mirabilis, WmPHOT1, in Arabidopsis thaliana. We generated transgenic A. thaliana lines expressing WmPHOT1 in a phot1 phot2 double mutant background. Several Wmphot1 transgenic plants showed normal growth, although phot1 phot2 double mutant plants showed stunted growth. Furthermore, Wmphot1 transgenic plants showed normal phot1-mediated responses including phototropism, chloroplast accumulation, stomatal opening, and leaf flattening, but lacked the chloroplast avoidance response that is specifically mediated by phot2. Thus, our findings indicate that W. mirabilis possesses typical phot-mediated BL responses that were at least partially mediated by functional phototropin 1, an ortholog of Atphot1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aihara Y, Tabata R, Suzuki T, Shimazaki K, Nagatani A (2008) Molecular basis of the functional specificities of phototropin 1 and 2. Plant J 56:364–375

    Article  PubMed  CAS  Google Scholar 

  • Berthier S, Stokes A (2005) Phototropic response induced by wind loading in Maritime pine seedlings (Pinus pinaster Ait.). J Exp Bot 56:851–856

    Article  PubMed  CAS  Google Scholar 

  • Bögre L, Okresz L, Henriques R, Anthony RG (2003) Growth signaling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci 8:424–431

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  PubMed  CAS  Google Scholar 

  • Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086–4091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Current Biol. 6:325–330

    Article  CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci USA 96:8779–8783

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Christie JM, Swartz TE, Bogomolni RA, Briggs WR (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J 32:205–219

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Crosson S, Moffat K (2001) Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc Natl Acad Sci USA 98:2995–3000

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Carbonnel M, Davis P, Roelfsema MRG, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C (2010) The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152:1391–1405

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doi M, Shigenaga A, Emi T, Kinoshita T, Shimazaki K (2004) A transgene encoding a blue-light receptor, phot1, restores blue-light responses in the Arabidopsis phot1 phot2 double mutant. J Exp Bot 55:517–523

    Article  PubMed  CAS  Google Scholar 

  • Doi M, Wada M, Shimazaki K (2006) The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant Cell Physiol 47:748–755

    Article  PubMed  CAS  Google Scholar 

  • Doi M, Kitagawa Y, Shimazaki K (2015) Stomatal blue light response is present in early vascular plants. Plant Physiol 169:1205–1213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eller BM, von Willert DJ, Brinkmann E, Baasch R (1983) Ecophysiological studies on Welwitschia mirabilis in the Namib Desert. S Afr J Bot 2:209–223

    Google Scholar 

  • Folta KM, Spalding EP (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 26:471–478

    Article  PubMed  CAS  Google Scholar 

  • Herrera R, Krier C, Lalanne C, Ba EM, Stokes A, Salin F, Fourcaud T, Claverol S, Plomion C (2010) (Not) Keeping the stem straight: a proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism. BMC Plant Biol 10:12

    Article  CAS  Google Scholar 

  • Higa T, Wada M (2015) Chloroplast avoidance movement is not functional in plants grown under strong sunlight. Plant Cell Environ. doi: 10.1111/pce.12681

    PubMed  Google Scholar 

  • Higa T, Suetsugu N, Kong SG, Wada M (2014) Actin-dependent plastid movement is required for motive force generation in directional nuclear movement in plants. Proc Natl Acad Sci USA 111:4327–4331

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123

    Article  PubMed  CAS  Google Scholar 

  • Huang KY, Merkle T, Beck CF (2002) Isolation and characterization of a Chlamydomonas gene that encodes a putative blue-light photoreceptor of the phototropin family. Physiol Plant 115:613–622

    Article  PubMed  CAS  Google Scholar 

  • Iino M (2001) Phototropism in higher plants. In: Hader D, Lebert M (eds) Photomovement, ESP comprehensive series in photosciences, vol 1. Elsevier Science, Amsterdam, pp 659–811

    Google Scholar 

  • Inoue S, Kinoshita T, Takemiya A, Doi M, Shimazaki K (2008a) Leaf positioning of Arabidopsis in response to blue light. Mol Plant 1:15–26

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K (2008b) Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105:5626–5631

    Article  PubMed Central  PubMed  Google Scholar 

  • Iwabuchi K, Sakai T, Takagi S (2007) Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells. Plant Cell Physiol 48:1291–1298

    Article  PubMed  CAS  Google Scholar 

  • Jacobson K, Lester E (2003) A first assessment of genetic variation in Welwitschia mirabilis Hook. J Hered 94:212–217

    Article  PubMed  CAS  Google Scholar 

  • Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Kasahara M, Abe T, Yoshida S, Wada M (2004) Function analysis of phototropin2 using fern mutants deficient in blue light-induced chloroplast avoidance movement. Plant Cell Physiol 45:416–426

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660

    Article  PubMed  CAS  Google Scholar 

  • Komatsu A, Terai M, Ishizaki K, Suetsugu N, Tsuboi H, Nishihama R, Yamato KT, Wada M, Kohchi T (2014) Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha. Plant Physiol 166:411–598

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kong SG, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A (2006) Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant J 51:994–1005

    Article  CAS  Google Scholar 

  • Kong SG, Suetsugu N, Kikuchi S, Nakai M, Nagatani A, Wada M (2013) Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. Plant Cell Physiol 54:80–92

    Article  PubMed  CAS  Google Scholar 

  • Kozuka T, Kong SG, Doi M, Shimazaki K, Nagatani A (2011) Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis. Plant Cell 23:3684–3695

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li FW, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M, Frangedakis E et al (2014) Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci USA 111:6672–6677

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li FW, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW, Graham SW, Wong GKS, Mathews S, Pryer KM (2015) The origin and evolution of phototropins. Front Plant Sci 6:637

    PubMed Central  PubMed  Google Scholar 

  • Muhammad AF, Sattler R (1982) Vessel structure of Gnetum and the origin of angiosperms. Am J Bot 69:1004–1021

    Article  Google Scholar 

  • Onodera A, Kong SG, Doi M, Shimazaki KI, Christie J, Mochizuki N, Nagatani A (2005) Phototropin from Chlamydomonas reinhardtii is functional in Arabidopsis thaliana. Plant Cell Physiol 46:367–374

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12:225–236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410

    Article  PubMed  CAS  Google Scholar 

  • Senn G (1908) Die Gestalts- und Lagaveranderung der Pflanzen-Chromatophoren. Wilhelm-Engelmann, Leipzig

    Google Scholar 

  • Shikata H, Shibata M, Ushijima T, Nakashima M, Kong SG, Matsuoka K, Lin CT, Matsushita T (2012) The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. Plant J 70:727–738

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu N, Wada M (2013) Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiol 54:8–23

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu N, Kagawa T, Wada M (2005) An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. Plant Physiol 139:151–162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suetsugu N, Takami T, Ebisu Y, Watanabe H, Iiboshi C, 2014, Doi M, Shimazaki K Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis. Plos One 9:e108374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sullivan S, Petersen J, Blackwood L, Papanatsiou M, Christie JM (2015) Functional characterization of Osteococcus tauri phototropin. New Phytol 209:612–623

    Article  PubMed  CAS  Google Scholar 

  • Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K (2005) Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17:1120–1127

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    PubMed Central  PubMed  CAS  Google Scholar 

  • von Willert DJ, Armbruster N, Drees T, Zaborowski M (2005) Welwitscia mirabilis: CAM or not CAM-what is the answer? Funct Plant Biol 32:389

    Article  Google Scholar 

  • Wada M, Kong SG (2011) Analysis of chloroplast movement and relocation in Arabidopsis. Method Mol Biol 774:87–102

    Article  CAS  Google Scholar 

  • Wan YL, Eisinger W, Ehrhardt D, Kubitschek U, Baluska F, Briggs WR (2008) The subcellular localization and blue-light induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant 1:103–117

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Schramm MJ (1986) Analysis of stomatal and nonstomatal components in the environmental control of CO2 Exchange in leaves of Welwitschia mirabilis. Plant Physiol 82:173–178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tomokazu Ushijima (Kyushu University), Hiroki Sakagami (Kyushu University) and Susumu Shiraishi (Kyushu University) for helpful discussions and Shouta Yamauchi (Kyushu University) for technical supports on stomatal aperture. This work was supported in part by a grant from JSPS KAKENHI to E. G. (15K18713) and to M. D. (26440150) and by the Research Grant for Young Investigators of Faculty of Agriculture, Kyushu University to E. G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Gotoh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishishita, K., Suetsugu, N., Hirose, Y. et al. Functional characterization of blue-light-induced responses and PHOTOTROPIN 1 gene in Welwitschia mirabilis . J Plant Res 129, 175–187 (2016). https://doi.org/10.1007/s10265-016-0790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0790-7

Keywords

Navigation