Skip to main content
Log in

Changes in the distribution of cell wall polysaccharides in early fruit pericarp and ovule, from fruit set to early fruit development, in tomato (Solanum lycopersicum)

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

During fruit development in tomato (Solanum lycopersicum), cell proliferation and rapid cell expansion occur after pollination. Cell wall synthesis, alteration, and degradation play important roles during early fruit formation, but cell wall composition and the extent of cell wall synthesis/degradation are poorly understood. In this study, we used immunolocalization with a range of specific monoclonal antibodies to examine the changes in cell wall composition during early fruit development in tomato. In exploring early fruit development, the −1 day post-anthesis (DPA) ovary and fruits at 1, 3, and 5 DPA were sampled. Paraffin sections were prepared for staining and immunolabeling. The 5 DPA fruit showed rapid growth in size and an increase in both methyl-esterified pectin and de-methyl-esterified pectin content in the pericarp, suggesting rapid synthesis and de-methyl esterification of pectin during this growth period. Labeling of pectic arabinan with LM6 antibody and galactan with LM5 antibody revealed abundant amounts of both, with unique distribution patterns in the ovule and premature pericarp. These results suggest the presence of rapid pectin metabolism during the early stages of fruit development and indicate a unique distribution of pectic galactan and arabinan within the ovule, where they may be involved in embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bertin N, Lecomte A, Brunel B, Fishman S, Génard M (2007) A model describing cell polyploidization in tissue of growing fruit as related to cessation of cell proliferation. J Exp Bot 58:1003–1013

    Article  Google Scholar 

  • Bertin N, Causse M, Brunel B, Tricon D, Génard M (2009) Identification of growth processes involved in QTLs for tomato fruit size and composition. J Exp Bot 60:237–248

    Article  PubMed  CAS  Google Scholar 

  • Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883–1897

    Article  PubMed  CAS  Google Scholar 

  • Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Center D, Ratxka A, Pauly M, Sweetlove LJ, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142:1380–1396

    Article  PubMed  CAS  Google Scholar 

  • Cheniclet C, Rong WY, Causse M, Bolling L, Frangne N, Carde JP, Renaudin JP (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994

    Article  PubMed  CAS  Google Scholar 

  • Génard M, Bertin N, Borel C, Bussiéres P, Gautier H, Habib R, Léchaudel M, Lecomte A, Lescourret F, Lobit P, Quilot B (2007) Towards a virtual fruit focusing on quality: modelling features and potential uses. J Exp Bot 58:917–928

    Article  PubMed  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    PubMed  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–180

    Article  Google Scholar 

  • Graffe J, Tiznado ME, Handa AK (1997) Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiol 114:1547–1556

    Article  Google Scholar 

  • Ishikawa M, Kuroyama H, Takeuchi Y, Tsumuraya Y (2000) Characterization of pectin methyltransferase from soybean hypocotyls. Planta 210:782–791

    Article  PubMed  CAS  Google Scholar 

  • Iwai H, Kikuchi A, Kobayashi T, Kamada H, Satoh S (1999) High levels of non-methylesterified pectins and low levels of peripherally located pectins in loosely attached non-embryogenic callus of carrot. Plant Cell Rep 18:561–566

    Article  CAS  Google Scholar 

  • Iwai H, Ishii T, Satoh S (2001) Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cell. Planta 213:907–915

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1 → 4)-[beta]-d-galactan. Plant Physiol 113:1405–1412

    PubMed  CAS  Google Scholar 

  • Joubés J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745

    Article  PubMed  Google Scholar 

  • Kauss H, Swanson AL, Hassid WZ (1967) Biosynthesis of the methylester groups of pectin by transmethylation from S-adenosyl-methionine. Biochem Biophys Res Comm 26:234–240

    Article  PubMed  CAS  Google Scholar 

  • Krall SM, McFeeters RF (1998) Pectin hydrolysis: effect of temperature, degree of methylation, pH and calcium on hydrolysis rates. J Agr Food Chem 46:1311–1315

    Article  CAS  Google Scholar 

  • Lee YK, Derbyshire P, Knox JP, Hvoslef-Eide AK (2008) Sequential cell wall transformations in response to the induction of a pedicel abscission event in Euphorbia pulcherrima (poinsettia). Plant J 54:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WGT, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60

    Article  PubMed  Google Scholar 

  • Moctezuma E, Smith DL, Gross KC (2003) Antisense suppression of a β-galactosidase gene (TBG6) in tomato increases fruit cracking. J Exp Bot 54:2025–2033

    Article  PubMed  CAS  Google Scholar 

  • Oechslin R, Lutz MV, Amado R (2003) Pectic substance isolated from apple cellulosic residue: structural characterisation of a new type of rhamnogalacturonan I. Carbohydr Polym 51:301–310

    Article  CAS  Google Scholar 

  • Ordaz-Ortiz JJ, Marcus SE, Knox JP (2009) Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Mol Plant 2:910–921

    Article  PubMed  CAS  Google Scholar 

  • Orfila C, Knox JP (2000) Spatial regulation of pectic polysaccharides in relation to pit fields in cell walls of tomato fruit pericarp. Plant Physiol 122:775–781

    Article  PubMed  CAS  Google Scholar 

  • Prasanna V, Prabha TN, Tharanathan N (2007) Fruit ripening phenomena—an overview. Crit Rev Food Sci Nutrit 47:1–19

    Article  CAS  Google Scholar 

  • Saladié M, Rose JKC, Congrove DJ, Catalá C (2006) Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J 47:282–295

    Article  PubMed  Google Scholar 

  • Smith O (1935) Pollination and life-history studies of the tomato. Cornell Univ Memoir 184:1–16

    Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:181–189

    Article  Google Scholar 

  • Vannier MP, Thoiron B, Morvan C, Demarty M (1992) Localization of methyltransferase activities throughout the endomembrane system of flax (Linum usitatissimum L.) hypocotyls. Biochem J 286:863–868

    PubMed  CAS  Google Scholar 

  • Vignon MR, Heux L, Malainine ME, Mahrouz M (2004) Arabinan–cellulose composite in Opuntia ficus-indica prickly pear spines. Carbohydr Res 339:123–131

    Article  PubMed  CAS  Google Scholar 

  • Vincken JP, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Hoson T, Huber DJ (2003) Methyl de-esterification as a major factor regulating the extent of pectin depolymerization during fruit ripening: a comparison of the action of avocado (Persea americana) and tomato (Lycopersicon esculentum) polygalacturonases. J Plant Physiol 160:667–673

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1 → 5)-alpha-l-arabinan. Carbohydr Res 308:149–152

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT, Clare G, Steele-King CG, Marcus SE, Knox JP (1999) Side chains of pectic polysaccharides are regulated in cell proliferation and cell differentiation. Plant J 20:619–628

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT, Limberg G, Buchholt HC, van Alebeek GJ, Benen J, Christensen TMIE, Visser J, Voragen A, Mikkelsen JD, Knox JP (2000) Analysis of pectic epitopes recognized by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydr Res 327:309–320

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  PubMed  CAS  Google Scholar 

  • Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:387–407

    Article  Google Scholar 

Download references

Acknowledgments

We thank Associate Professor Shinichi Miyamura of the University of Tsukuba for critical reading and suggestions. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (18075004) and a Grant-in-Aid for Scientific Research on Innovative Areas (24114006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Iwai.

Additional information

A. Terao and H. Iwai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terao, A., Hyodo, H., Satoh, S. et al. Changes in the distribution of cell wall polysaccharides in early fruit pericarp and ovule, from fruit set to early fruit development, in tomato (Solanum lycopersicum). J Plant Res 126, 719–728 (2013). https://doi.org/10.1007/s10265-013-0555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-013-0555-5

Keywords

Navigation