Skip to main content
Log in

The Zea mays glycine-rich RNA-binding protein MA16 is bound to a ribonucleotide(s) by a stable linkage

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Expression of the gene encoding the maize glycine-rich RNA-binding protein MA16 is developmentally regulated and it is involved in environmental stress responses. The MA16 protein shows a wide spectrum of RNA-binding activities. On the basis of in vivo labelling, where a [32P]phosphate label was linked to the MA16 protein, Freire and Pages (Plant Mol Biol 29:797–807, 1995) suggested that the protein may be post-translationally modified by phosphorylation. However, further analysis showed that the [32P]phosphate label was sensitive to different treatments, suggesting that modification distinct from protein phosphorylation might occur in the MA16 protein. Biochemical analysis revealed that this [32P]phosphate labelling was resistant to phenol extraction and denaturing SDS-PAGE but sensitive to micrococcal nuclease, RNase A and RNase T1 treatments. The mobility of [35S] labelled MA16 protein on SDS-PAGE did not significantly changed after the nuclease treatments suggesting that the [32P]phosphate label associated to MA16 protein could be a ribonucleotide or a very short ribonucleotide chain. In addition, immunoprecipitation of labelled extracts showed that the ribonucleotide(s) linked to the MA16 protein was removed by phosphorolytic activity. This activity could be catalysed by a phosphate-dependent ribonuclease. The C-terminus of MA16 protein harbouring a glycine-rich domain was predicted to be an intrinsically disordered region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MN:

Micrococcal nuclease

PNPase:

Polynucleotide phosphorylase

Pi:

Inorganic phosphate

PDX:

Phosphate-dependent exoribonuclease

References

  • Alba MM, Culiañez-Macia FA, Goday A, Freire MA, Nadal B, Pages M (1994) The maize RNA-binding protein, MA16, is a nucleolar protein located in the dense fibrillar component. Plant J 6:825–834

    Article  CAS  Google Scholar 

  • Baginsky S, Shteiman-Kotler A, Liveanu V, Yehudai-Resheff S, Bellaoui M, Settlage RE, Shabanowitz J, Hunt D, Schuster G, Gruissem W (2001) Chloroplast PNPase exists as a homo-multimer enzyme complex that is distinct from the Escherichia coli degradosome. RNA 10:1464–1475

    Google Scholar 

  • Bandziulis RJ, Swanson MS, Dreyfuss G (1989) RNA-binding proteins as developmental regulators. Genes Dev 3:431–437

    Article  PubMed  CAS  Google Scholar 

  • Blackburn P, Moore S (1982) Pancreatic ribonuclease. In: Boyer PD (ed) The enzymes, vol XV. Academic Press, New York, pp 317–433

    Google Scholar 

  • Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390

    Article  PubMed  CAS  Google Scholar 

  • Butler JS (2002) The yin and yang of the exosome. Trends Cell Biol 12:90–96

    Article  PubMed  CAS  Google Scholar 

  • Challberg MD, Desiderio SV, Kelly TJ Jr (1980) Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci USA 77:5105–5109

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Shaw RJ, Wills MA, Belostotsky DA (2000) Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J Biol Chem 275:33158–33166

    Article  PubMed  CAS  Google Scholar 

  • Derry JM, Kerns JA, Francke U (1995) RBM3, a novel human gene Xp11.23 with a putative RNA-binding domain. Hum Mol Genet 4:2307–2311

    Article  PubMed  CAS  Google Scholar 

  • Didierjean L, Frendo P, Bukard G (1992) Stress responses in maize: sequences analysis of cDNA encoding glycine-rich proteins. Plant Mol Biol 18:847–849

    Article  PubMed  CAS  Google Scholar 

  • Flanegan JB, Petterson RF, Ambros V, Hewlett NJ, Baltimore D (1977) Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus. Proc Natl Acad Sci USA 74:961–965

    Article  PubMed  CAS  Google Scholar 

  • Freire MA, Pages M (1995) Functional characteristics of the maize RNA-binding protein MA16. Plant Mol Biol 29:797–807

    Article  PubMed  CAS  Google Scholar 

  • Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–288

    Article  PubMed  CAS  Google Scholar 

  • Gendra E, Moreno A, Alba MM, Pages M (2004) Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J 38:875–886

    Article  PubMed  CAS  Google Scholar 

  • Ghisolfi L, Joseph G, Amalric F, Erard M (1992) The glycine-rich domain of nucleolin has an unusual supersecondary structure responsible for its RNA-helix destabilizing properties. J.Biol Chem 267:2955–2959

    PubMed  CAS  Google Scholar 

  • Girard JP, Lehtonen H, Caizergues-Ferrer M, Almaric F, Tollervey D, Lapeyre B (1992) GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J 11:673–682

    PubMed  CAS  Google Scholar 

  • Gomez J, Sanchez-Martinez D, Stiefel V, Rigau J, Puigdomènech P, Pagès M (1988) A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334:262–264

    Article  PubMed  CAS  Google Scholar 

  • Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7:529–539

    Article  PubMed  CAS  Google Scholar 

  • Itzen A, Blankenfeldt W, Goody RS (2011) Adenylylation: renaissance of a forgotten post-translational modification. Trends Biochem Sci 36:221–228

    Article  PubMed  CAS  Google Scholar 

  • Jong AY, Clark MW, Gilbert M, Oehm A, Campbell JL (1987) Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins. Mol Cell Biol 7:2947–2955

    PubMed  CAS  Google Scholar 

  • Kenan DJ, Query CC, Keene JD (1991) RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci 16:214–220

    Article  PubMed  CAS  Google Scholar 

  • Kiledjian M, Dreyfuss G (1992) Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11:2655–2664

    PubMed  CAS  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–466

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lapeyre B, Bourbon H, Amalric F (1987) Nucleolin, the major nucleolar protein of growing eukaryotic cells: an unusual protein structure revealed by the nucleotide sequence. Proc Natl Acad Sci USA 84:1472–1476

    Article  PubMed  CAS  Google Scholar 

  • Lee YF, Nomoto A, Detjen BM, Wimmer E (1977) A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci USA 74:59–63

    Article  PubMed  CAS  Google Scholar 

  • Lee WC, Xue ZX, Melese T (1991) The NSR1 gene encodes a protein that specifically binds nuclear localization sequences and has two RNA recognition motifs. J Cell Biol 113:1–12

    Article  PubMed  CAS  Google Scholar 

  • Lobreaux S, Hardy T, Briat JF (1993) Abscisic acid is envolved in the iron-induced synthesis of maize ferritin. EMBO J 12:651–657

    PubMed  CAS  Google Scholar 

  • Ludevid MD, Freire MA, Gomez J, Burd CG, Albericio F, Giralt E, Dreyfuss G, Pages M (1992) RNA binding characteristics of a 16 kDa glycine-rich protein from maize. Plant J 2:999–1003

    PubMed  CAS  Google Scholar 

  • Mitchell P, Tollervey D (2000) Musing on the structural organization of the exosome complex. Nat Struct Biol 7:843–846

    Article  PubMed  CAS  Google Scholar 

  • Munroe SH, Dong X (1992) Heterogenous nuclear ribonucleoproein A1 catalyzes RNA. RNA annealing. Proc Natl Acad Sci USA 89:895–899

    Article  PubMed  CAS  Google Scholar 

  • Murphy JF, Rychlik W, Rhoads RE, Hunt AG, Shaw JG (1991) A tyrosine residue in the small nuclear inclusion protein of tobacco vein mottling virus links the VPg to the viral RNA. J Virol 65:511–513

    PubMed  CAS  Google Scholar 

  • Nishizuka Y, Ueda K, Nakazawa K, Hayaishi O (1967) Studies on the polymer of adenosine diphosphate ribose. J Biol Chem 242:3164–3171

    Google Scholar 

  • Ochs RL, Lischwe MA, Spohn WH, Busch H (1985) Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell 54:123–133

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11:121–127

    Article  PubMed  CAS  Google Scholar 

  • Pih KT, Yi MJ, Liang YS, Shin BJ, Cho MJ, Hwang I, Son D (2000) Molecular cloning and targeting of a fibrillarin homolog from Arabidopsis. Plant Physiol 123:51–58

    Article  PubMed  CAS  Google Scholar 

  • Piñol-Roma S, Dreyfuss G (1992) Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355:730–732

    Article  PubMed  Google Scholar 

  • Raijmakers R, Schilders G, Pruijn GJ (2004) The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. Eur J Cell Biol 83:175–183

    Article  PubMed  CAS  Google Scholar 

  • Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Blasi U, Schroeder R (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4:118–130

    Article  PubMed  CAS  Google Scholar 

  • Rauhut R, Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23:353–370

    Article  PubMed  CAS  Google Scholar 

  • Roth MJ, Brown DR, Hurwitz J (1984) Analysis of bacteriophage phi X174 gene A protein-mediated termination and reinitiation of phi X DNA synthesis. II. Structural characterization of the covalent phi X A protein-DNA complex. J Biol Chem 259:10556–10568

    PubMed  CAS  Google Scholar 

  • Samad A, Anderson CW, Carroll RB (1986) Mapping of phosphomonoester and apparent phosphodiester bonds of the oncogene product p53 from simian virus 40-transformed 3T3 cells. Proc Natl Acad Sci USA 83:897–901

    Article  PubMed  CAS  Google Scholar 

  • Sato N (1995) A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3. Nucl Acid Res 23:2161–2167

    Article  CAS  Google Scholar 

  • Symmons MF, Williams MG, Luisi BF, Jones GH, Carpousis AJ (2002) Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends Biochem Sci 27:11–18

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Moore S (1982) Ribonuclease T1. In: Boyer PD (ed) The enzymes, vol XV. Academic Press, New York, pp 435–468

    Google Scholar 

  • Vartapetian AB, Makarova TN, Koonin EV, Agol V, Bogdanov A (1988) Small cytoplasmic RNA from mouse cells covalently linked to a protein. FEBS Lett 232:35–38

    Article  PubMed  CAS  Google Scholar 

  • Ziemienowicz A, Hassen D, Staiger D, Merkle T (2003) Arabidopsis transportin 1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7. Plant Mol Biol 53:201–212

    Article  PubMed  CAS  Google Scholar 

  • Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017–1026

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Dr. M. Pages for fruitful discussions, Ms. E. Vega for editing the manuscript, Dr. S. Burgess for English corrections and CSIC and CONICET for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Freire.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freire, M.A. The Zea mays glycine-rich RNA-binding protein MA16 is bound to a ribonucleotide(s) by a stable linkage. J Plant Res 125, 653–660 (2012). https://doi.org/10.1007/s10265-012-0476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0476-8

Keywords

Navigation