Skip to main content
Log in

Cd-induced growth reduction in the halophyte Sesuvium portulacastrum is significantly improved by NaCl

  • Short Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The effects of Cd2+ and NaCl, applied together or separately, on growth and uptake of Cd2+ were determined for the halophyte Sesuvium portulacastrum L. Seedlings were cultivated in the presence of 50 or 100 μmol L−1 Cd2+ alone or combined with 100 or 400 mmol L−1 NaCl. Data showed that alone, Cd2+ induced chlorosis, necrosis, and inhibited growth. Addition of NaCl to Cd2+-containing medium restored growth and alleviated the toxicity, however. NaCl also enhanced the amounts of Cd2+ accumulated in the shoots. All Cd2+ treatment reduced K+ and Ca2+ uptake and transport to the shoots. Accumulation of Na+ in the shoots was not affected by Cd2+, however. Thus S. portulacastrum maintained its halophytic characteristics in the presence of Cd2+. We suggest this halophyte could be used for phytoextraction of Cd2+ from salt-contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG (2003) Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prospis spp.): chromate-plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859–1864

    Article  PubMed  CAS  Google Scholar 

  • Arduini I, Masoni A, Mariotti M, Ercoli L (2004) Low cadmium application increase miscanthus growth and cadmium translocation. Environ Exp Bot 52:89–100

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Arnon DI, Hoagland DR (1940) Crop production in artificial solutions and in soils with special reference to factors affecting yields and absorption of inorganic nutrients. Soil Sci 50:463–484

    CAS  Google Scholar 

  • Baumeister W, Kloos G (1974) Uber die salzseekretion bei Halimione portulacoides L. Sellen Flora 163:310–326

    CAS  Google Scholar 

  • Bingham FT, Sposito G, Strong JE (1984) The effect of chloride on the availability of cadmium. J Environ Qual 13:71–74

    CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    CAS  Google Scholar 

  • Chen HM, Zheng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 4:229–234

    Article  Google Scholar 

  • De la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168

    Article  CAS  Google Scholar 

  • Epstein AL, Gussman CD, Balaylock MJ, Yermiyahu U, Huang JW, Kapulnik Y, Orser CS (1999) EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil 208:87–94

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  PubMed  CAS  Google Scholar 

  • Ghnaya T, Nouairi I, Messedi D, Grignon C, Abdelly C, Ghorbel MH (2004) Evaluation de l’aptitude de deux halophytes à extraire les métaux lourds. Revue des Régions Arides, special issue, pp 185–191

  • Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Gleen E, Hiks N, Riley J, Swingle S (1996) Sea water irrigation of halophytes for animal feed. In: Choukr-Allah R, Malcolm C, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York pp 221–236

    Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • He Z, Li J, Zhang H, Ma M (2005) Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Sci 168:309–318

    Article  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Bureau of Horticulture Tech Com 22

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Hunt R (1990) Basic growth analysis. Plant growth analysis for beginners. UNWIN HYMAN London pp 112

    Google Scholar 

  • Jacobson L (1951) Maintenance of iron supply in nutrient solutions by a single addition of ferric-potassium-ethylene-diamine-tetraacetate. Plant Physiol 26:411–413

    PubMed  CAS  Google Scholar 

  • Jordan FL, Robin-Abbott M, Maier RM, Glenn EP (2002) A comparison of chelator-facilitated uptake by a halophyte and a glycophyte. Environ Toxicol Chem 21:2698–2704

    Article  PubMed  CAS  Google Scholar 

  • López-Chuken UJ, Young SD (2005) Plant screening of halophyte species for cadmium phytoremediation. Z Naturforsch 60:236–243

    Google Scholar 

  • Martinez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    Article  PubMed  CAS  Google Scholar 

  • Menzel U, Lieth H (1999) Annex 4: Halophyte Database Vers 2. In: Lieth H, Moshenko M, Lohmann M, Koyro HW, Hamdy A (eds) Halophyte uses in different climates 1. Ecological and physiological studies. Progress in biometeorology, vol 13. Backhuys Publishers, Leiden, pp 159–258

  • Messedi D, Sleimi N, Abdelly C (2003) Some physiological and biochemical aspects of salt tolerance in Sesuvium portulacastrum. In: Lieth H (ed) Cash crop halophytes: recent studies. Kluwer London, pp 71–78

    Google Scholar 

  • Messedi D, Labidi N, Grignon C, Abdelly C (2004) Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. J Plant Nutr Soil Sci 167:720–725

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Palmer LT, Tiller KG, Beech TA, Smart MK (1994) Increased soil salinity causes elevated cadmium concentration in field grown potato tubers. J Environ Qual 23:1013–1018

    CAS  Google Scholar 

  • Slama I, Messedi D, Ghnaya T, Savoure A, Abdelly C (2006) Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum. Environ Exp Bot 56:231–238

    Article  CAS  Google Scholar 

  • Smolders E, McLaughlin MJ (1996) Effect of Cl on Cd uptake by Swiss chard in nutrient solution. Plant Soil 179:57–64

    Article  CAS  Google Scholar 

  • Smolders E, Lambregts RM, McLaughlin MJ, Tiller KG (1998) Effects of soil solution chloride on cadmium availability to Swiss chard. J Environ Qual 27:426–431

    Article  CAS  Google Scholar 

  • Smýkalová I, Zámečníková B (2003) The relationship between salinity and cadmium stress in barley. Biol Plant 46:269–273

    Article  Google Scholar 

  • Sepehr MF, Ghorbanli M, Khavari Nejad RA (2003) Effects of cadmium and salinity on growth, photosynthesis and ionic contents of Zea mays. Asian J Plant Sci 2:196–201

    Article  Google Scholar 

  • Venosa A, Lee K, Suidan M, Garcia-Blanco S, Cobanli S, Moteleb M, Haines J, Tremblay G, Hazelwood M (2002) Bioremediation and Biorestoration of a crude oil-contaminated freshwater wetland on the St. Lawrence River. Bioremediation J 6:261–281

    Article  CAS  Google Scholar 

  • Williams TP, Bubb JB, Lester JN (1994) The occurrence and distribution of trace metals in halophytes. Chemosphere 28:1189–1199

    Article  CAS  Google Scholar 

  • Wu J, Norvell WA, Hopkins DG, Welch RM (2002) Effects of forms and rates of potassium fertilisers on cadmium uptake by two cultivars of spring wheat (Triticum aestivium L.). Environ Int 29:973–978

    Google Scholar 

  • Zurayk RA, Khoury NF, Talhouk SN, Baalbaki R (2001) Salinity-heavy metal interactions in four salt-tolerant plant species. J Plant Nutr 11:1773–1786

    Article  Google Scholar 

Download references

Acknowledgments

This work was achieved in the Laboratory of Plant Adaptation to Abiotic stresses. It was supported by the PRC project “Utilisation des halophytes pour la réhabilitation et la valorisation des sols salins” of the Tunisian Minister of Scientific Research, Technology and Competence Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chedly Abdelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghnaya, T., Slama, I., Messedi, D. et al. Cd-induced growth reduction in the halophyte Sesuvium portulacastrum is significantly improved by NaCl. J Plant Res 120, 309–316 (2007). https://doi.org/10.1007/s10265-006-0042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-006-0042-3

Keywords

Navigation