Skip to main content
Log in

Blow-up, quenching, aggregation and collapse in a chemotaxis model with reproduction term

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we consider the following chemotaxis model with ratio-dependent logistic reaction term

$$\left\{ \begin{gathered} \tfrac{{\partial u}} {{\partial t}} = D\nabla (\nabla u - u\tfrac{{\nabla w}} {w}) + u(a - b\tfrac{u} {w}), (x,t) \in Q_T , \hfill \\ \tfrac{{\partial u}} {{\partial t}} = \beta u - \delta w, (x,t) \in Q_T , \hfill \\ u\nabla \ln (\tfrac{u} {w}) \cdot \vec n = 0, x \in \partial \Omega 0 < t < T, \hfill \\ u(x,0) = u_0 (x) > 0, x \in \bar \Omega , \hfill \\ w(x,0) = w_0 (x) > 0, x \in \bar \Omega , \hfill \\ \end{gathered} \right.$$

It is shown that the solution to the problem exists globally if b + β ≥ 0 and will blow up or quench if b + β < 0 by means of function transformation and comparison method. Various asymptotic behavior related to different coefficients and initial data is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erban, R., Othmer, H.G. From individual to collective behavior in bacterial chemotaxis. SIAM J. Appl. Math., 65(2): 361–391 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hillen, T., Painter, K.J. Global Existence for a Parabolic Model with Bounded chemotaxis-Prevention of overcrowding. Adv. Appl. Math. 26: 280–301 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hillen, T., Stevens, A. Hyperbolic Models for Chemotaxis in 1-D. Nonl. Anal.: Real world Appl., 1(3): 409–433 (2001)

    Article  MathSciNet  Google Scholar 

  4. Horstmann, D. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I. Jahresberichte der DMV., 105: 103–165 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Horstmann, D. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II. Jahresberichte der DMV., JB106: 51–69 (2004)

    MathSciNet  Google Scholar 

  6. Li, J.F, Liu, W.A. Existence of Solution to Some Othmer-Stevens Chemotaxis System with Reaction Term. Acta Mathemaitica Scienta (Series A), 29(6): 1561–1571 (2009)

    MATH  Google Scholar 

  7. Li J.F, Liu, W.A. Existence and Behavior of Solution to Some Chemotaxis System with Interacting Species. International J. Biomathematics, 3(3): 367–382 (2010)

    Article  Google Scholar 

  8. Keller, E.F., Segel, L.A. Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology. 26: 399–415 (1970)

    Article  MATH  Google Scholar 

  9. Othmer, H.G., Stevens, A. Aggregation, blow-up and collapse: the ABC’s of taxis in reinforced random walks. SIAM Journal on Applied Mathematics, 57: 1044–1081 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Painter, K.J., Jonathan, A. Sherratt, Modelling the movement of interacting cell populations. J. Theor. Biol., 225: 327–339 (2003)

    Article  Google Scholar 

  11. Painter, K.J., Maini, P.K., Othmer H.G. A chemotactic model for the advance and retreat of primitive streak in Avain development. Bull. Math. Biol., 62: 501–525 (2000)

    Article  Google Scholar 

  12. Painter, K.J., Hillen, T. Models for Chemosensitive Movement. Canadian Appl. Math. Quart., 10(4): 501–543 (2003)

    MathSciNet  Google Scholar 

  13. Sleeman, B.D., Levine, H.A. Partial differential equations of chemotaxis and angiogenesis. Mathematical Methods in the Applied Science, 24: 405–426 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stevens, A. Trail Following and Aggregation of myxobacteria. J. Biol. Systems., 3: 1059–1068 (1995)

    Article  Google Scholar 

  15. Stevens, A. A Stochastic cellular automaton, modelling gliding and aggregation of myxobacteria. SIAM J. Appl. Math., 61: 172–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stevens, A. The derivative of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particles systems. SIAM J. Appl. Math., 61(1): 183–212 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yang, Y. Some results on reaction-diffusion systems modelling chemotaxis. Ph.D. Thesis., Wuhan University. Wuhan, 2000

    Google Scholar 

  18. Yang, Y., Chen H., Liu, W.A. On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM J. on Math. Anal., 33(4): 763–785 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang, Y., Chen H., Liu, W.A., Sleeman, B.D. The solvability of some chemotaxis system. J.D.E., 212: 432–451 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen.

Additional information

Supported by the National Natural Science Foundation of China (No.11371161).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jf., Chen, H. & Liu, Wa. Blow-up, quenching, aggregation and collapse in a chemotaxis model with reproduction term. Acta Math. Appl. Sin. Engl. Ser. 30, 617–626 (2014). https://doi.org/10.1007/s10255-014-0406-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-014-0406-8

Keywords

2000 MR Subject Classification

Navigation