Skip to main content
Log in

The structure of approximate groups

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

Let K⩾1 be a parameter. A K-approximate group is a finite set A in a (local) group which contains the identity, is symmetric, and such that AA is covered by K left translates of A.

The main result of this paper is a qualitative description of approximate groups as being essentially finite-by-nilpotent, answering a conjecture of H. Helfgott and E. Lindenstrauss. This may be viewed as a generalisation of the Freiman-Ruzsa theorem on sets of small doubling in the integers to arbitrary groups.

We begin by establishing a correspondence principle between approximate groups and locally compact (local) groups that allows us to recover many results recently established in a fundamental paper of Hrushovski. In particular we establish that approximate groups can be approximately modeled by Lie groups.

To prove our main theorem we apply some additional arguments essentially due to Gleason. These arose in the solution of Hilbert’s fifth problem in the 1950s.

Applications of our main theorem include a finitary refinement of Gromov’s theorem, as well as a generalized Margulis lemma conjectured by Gromov and a result on the virtual nilpotence of the fundamental group of Ricci almost nonnegatively curved manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Benjamini and G. Kozma, A resistance bound via an isoperimetric inequality, Combinatorica, 25 (2005), 645–650.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Bieberbach, Über einen Satz des Herrn C. Jordan in der Theorie der endlichen Gruppen linearer Substitutionen, Sitzber. Preuss. Akad. Wiss, Berlin, 1911.

    Google Scholar 

  3. Y. Bilu, Addition of sets of integers of positive density, J. Number Theory, 64 (1997), 233–275.

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Bilu, Structure of sets with small sumset, Astérisque, 258 (1999), 77–108. Structure theory of set addition.

    MathSciNet  Google Scholar 

  5. E. Breuillard and B. Green, Approximate groups. I: the torsion-free nilpotent case, J. Inst. Math. Jussieu, 10 (2011), 37–57.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Breuillard and B. Green, Approximate groups. II: the solvable linear case, Q. J. of Math., Oxf., 62 (2011), 513–521.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Breuillard and B. Green, Approximate groups. III: the unitary case, Turk. J. Math., 36 (2012), 199–215.

    MathSciNet  MATH  Google Scholar 

  8. E. Breuillard, B. Green, and T. Tao, Approximate subgroups of linear groups, Geom. Funct. Anal., 21 (2011), 774–819.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ, Springer Series in Soviet Mathematics.

    MATH  Google Scholar 

  10. M.-C. Chang, A polynomial bound in Freiman’s theorem, Duke Math. J., 113 (2002), 399–419.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. Math., 144 (1996), 189–237.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. J. Corwin and F. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications, CUP, Cambridge, 1990.

    MATH  Google Scholar 

  13. E. Croot and O. Sisask, A probabilistic technique for finding almost-periods of convolutions, Geom. Funct. Anal., 20 (2010), 1367–1396.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Fisher, N. H. Katz, and I. Peng, Approximate multiplicative groups in nilpotent Lie groups, Proc. Am. Math. Soc., 138 (2010), 1575–1580.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. A. Freiman, Foundations of a Structural Theory of Set Addition, American Mathematical Society, Providence, 1973. Translated from the Russian, Translations of Mathematical Monographs, vol. 37.

    MATH  Google Scholar 

  16. K. Fukaya and T. Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann. Math., 136 (1992), 253–333.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Universitext, Springer, Berlin, 1987.

    Book  MATH  Google Scholar 

  18. N. Gill and H. Helfgott, Growth in solvable subgroups of GL r (Z/p Z), preprint (2010), arXiv:1008.5264.

  19. N. Gill and H. Helfgott, Growth of small generating sets in SL n (Z/p Z), Int. Math. Res. Not., 18 (2011), 4226–4251.

    MathSciNet  Google Scholar 

  20. A. M. Gleason, The structure of locally compact groups, Duke Math. J., 18 (1951), 85–104.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. M. Gleason, Groups without small subgroups, Ann. Math., 56 (1952), 193–212.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Gödel, Consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory, Proc. Natl. Acad. Sci, 24 (1938), 556–557.

    Article  Google Scholar 

  23. I. Goldbring, Nonstandard Methods in Lie Theory, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2009.

  24. I. Goldbring, Hilbert’s fifth problem for local groups, Ann. Math., 172 (2010), 1269–1314.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Green and I. Z. Ruzsa, Freiman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc., 75 (2007), 163–175.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Green and T. Tao, Compressions, convex geometry and the Freiman-Bilu theorem, Q. J. Math., 57 (2006), 495–504.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHÉS, 53 (1981), 53–73.

    MathSciNet  MATH  Google Scholar 

  28. M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Modern Birkhäuser Classics, Birkhäuser, Boston, 2007. Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.

    MATH  Google Scholar 

  29. M. Hall Jr., The Theory of Groups, Chelsea Publishing Co., New York, 1976. Reprinting of the 1968 edition.

    MATH  Google Scholar 

  30. H. A. Helfgott, Growth and generation in SL2(Z/p Z), Ann. Math., 167 (2008), 601–623.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. A. Helfgott, Growth in SL3(Z/p Z), J. Eur. Math. Soc., 13 (2011), 761–851.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Hirschfeld, The nonstandard treatment of Hilbert’s fifth problem, Trans. Am. Math. Soc., 321 (1990), 379–400.

    MathSciNet  MATH  Google Scholar 

  33. E. Hrushovski, Stable group theory and approximate subgroups, J. Am. Math. Soc., 25 (2012), 189–243.

    Article  MathSciNet  MATH  Google Scholar 

  34. I. Kaplansky, Lie Algebras and Locally Compact Groups, The University of Chicago Press, Chicago, 1971.

    MATH  Google Scholar 

  35. V. Kapovitch, A. Petrunin, and W. Tuschmann, Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. Math., 171 (2010), 343–373.

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Kapovitch and B. Wilking, Structure of fundamental groups of manifolds with Ricci curvature bounded below, preprint (2011), arXiv:1105.5955.

  37. B. Kleiner, A new proof of Gromov’s theorem on groups of polynomial growth, J. Am. Math. Soc., 23 (2010), 815–829.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Lee and Y. Makarychev, Eigenvalue multiplicity and volume growth, preprint (2008), arXiv:0806.1745.

  39. D. Montgomery and L. Zippin, Small subgroups of finite-dimensional groups, Ann. Math., 56 (1952), 213–241.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience Publishers, New York, 1955.

    MATH  Google Scholar 

  41. P. J. Olver, Non-associative local Lie groups, J. Lie Theory, 6 (1996), 23–51.

    MathSciNet  MATH  Google Scholar 

  42. C. Pittet and L. Saloff-Coste, A survey on the relationships between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples, survey, preprint (2000).

  43. L. Pyber and E. Szabó, Growth in finite simple groups of Lie type of bounded rank, preprint (2010), arXiv:1005.1858.

  44. I. Z. Ruzsa, Generalized arithmetical progressions and sumsets, Acta Math. Hung., 65 (1994), 379–388.

    Article  MathSciNet  MATH  Google Scholar 

  45. I. Z. Ruzsa, An analog of Freiman’s theorem in groups, Astérisque, 258 (1999), 323–326.

    MathSciNet  Google Scholar 

  46. T. Sanders, From polynomial growth to metric balls in monomial groups, preprint (2009), arXiv:0912.0305.

  47. T. Sanders, On a non-abelian Balog-Szemerédi-type lemma, J. Aust. Math. Soc., 89 (2010), 127–132.

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Sanders, On the Bogolyubov-Ruzsa lemma. Anal. Partial Differ. Equ. (2010), to appear, arXiv:1011.0107.

  49. T. Sanders, A quantitative version of the non-abelian idempotent theorem, Geom. Funct. Anal., 21 (2011), 141–221.

    Article  MathSciNet  MATH  Google Scholar 

  50. J.-P. Serre, Lie Algebras and Lie Groups, Lecture Notes in Mathematics, vol. 1500, Springer, Berlin, 2006. 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition.

    Google Scholar 

  51. Y. Shalom and T. Tao, A finitary version of Gromov’s polynomial growth theorem, Geom. Funct. Anal., 20 (2010), 1502–1547.

    Article  MathSciNet  MATH  Google Scholar 

  52. T. Tao, Product set estimates for non-commutative groups, Combinatorica, 28 (2008), 547–594.

    Article  MathSciNet  MATH  Google Scholar 

  53. T. Tao, Freiman’s theorem for solvable groups, Contrib. Discrete Math., 5 (2010), 137–184.

    MathSciNet  Google Scholar 

  54. T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  55. W. P. Thurston, Three-Dimensional Geometry and Topology, vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, 1997. Edited by Silvio Levy.

    MATH  Google Scholar 

  56. L. van den Dries and I. Goldbring, Globalizing locally compact local groups, J. Lie Theory, 20 (2010), 519–524.

    MathSciNet  MATH  Google Scholar 

  57. L. van den Dries and I. Goldbring, Seminar notes on Hilbert’s 5th problem, preprint (2010).

  58. L. van den Dries and A. J. Wilkie, Gromov’s theorem on groups of polynomial growth and elementary logic, J. Algebra, 89 (1984), 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  59. N. T. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  60. H. Yamabe, A generalization of a theorem of Gleason, Ann. Math., 58 (1953), 351–365.

    Article  MathSciNet  MATH  Google Scholar 

  61. H. Yamabe, On the conjecture of Iwasawa and Gleason, Ann. Math., 58 (1953), 48–54.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Breuillard.

About this article

Cite this article

Breuillard, E., Green, B. & Tao, T. The structure of approximate groups. Publ.math.IHES 116, 115–221 (2012). https://doi.org/10.1007/s10240-012-0043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-012-0043-9

Keywords

Navigation